Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) \(f\left(x\right)=2x^6+3x^2+5x^3-2x^2+4x^4-x^3+1-4x^3-x^4\)
\(f\left(x\right)=2x^6+\left(4-1\right)x^4+\left(5-1-4\right)x^3+\left(3-2\right)x^2+1\)
\(f\left(x\right)=2x^6+3x^4+x^2+1\)
b) \(2.1+3.1+1+1=7\)
c) \(\left\{{}\begin{matrix}x^6\ge0\\x^4\ge0\\x^2\ge0\end{matrix}\right.\) \(\Leftrightarrow2x^6+3x^4+x^2\ge0\Rightarrow2x^6+3x^4+x^2+1\ge1\)
=> f(x) >=1 => dpcm
a) A(x) = f(x) + g(x) = ( 2x^3 + 3x - 4x^3 + 1/2 - 5x^4 ) + ( 3x^4 + 0,2 - 7x^2 + 5x^3 - 9x )
= 2x^3 + 3x - 4x^3 + 1/2 - 5x^4 + 3x^4 + 0,2 - 7x^2 + 5x^3 - 9x
= ( 2x^3 - 4x^3 + 5x^3 ) + ( 3x - 9x ) + ( 1/2 + 0,2 ) + ( -5x^4 + 3x^4 ) - 7x^2
= 3x^3 - 6x + 0,7 - 2x^4 - 7x^2
B(x) = f(x) - g(x) = ( 2x^3 + 3x - 4x^3 + 1/2 - 5x^4 ) - ( 3x^4 + 0,2 - 7x^2 + 5x^3 - 9x )
= 2x^3 + 3x - 4x^3 + 1/2 - 5x^4 - 3x^4 - 0,2 + 7x^2 - 5x^3 + 9x
= ( 2x^3 - 4x^3 - 5x^3 ) + ( 3x + 9x ) + ( 1/2 - 0,2 ) + ( -5x^4 - 3x^4 ) + 7x^2
= -7x^3 + 12x + 0,3 -8x^4 + 7x^2
a/ \(h\left(x\right)=x^4+5x^2+4\)
b/ Do \(\left\{{}\begin{matrix}x^4\ge0\\5x^2\ge0\end{matrix}\right.\) \(\forall x\Rightarrow h\left(x\right)\ge0+0+4=4\)
\(\Rightarrow h\left(x\right)>0\)
\(\Rightarrow h\left(x\right)\) không có nghiệm
\(f\left(x\right)=5x^3+2x^4-x^2+3x^2-x^3-x^4+1-4x^3\)
\(f\left(x\right)=\left(5x^3-x^3-4x^3\right)+\left(2x^4-x^4\right)+\left(-x^2+3x^2\right)+1\)
\(f\left(x\right)=x^4+2x^2+1\)
Cho \(f\left(x\right)=0\)
\(\Rightarrow f\left(x\right)=x^4+2x^2+1=0\)
Ta có:
\(x^4\ge0\)
\(2x^2\ge0\)
Do đó:
\(x^4+2x^2+1\ge0+1\)
\(x^4+2x^2+1\ge1\)
=> Vậy đa thức \(x^4+2x^2+1\) = \(5x^3+2x^4-x^2+3x^2-x^3-x^4+1-4x^3\) vô nghiệm.