Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
A=((x-3)+(x+1))^2>=0
A=(x-2)^2>=0
Dấu bằng xảy ra khi
(x-2)^2=0
x-2=0
x=0+2
x=2
( x - 3)( x - 5) + 4 = x^2 - 3x - 5x + 15 + 4 = x^2 - 8x + 19 = x^2 -8x + 16 + 3 = (x - 4)^2 + 3
Vì( x + 4)^2 > = 0 với mọi x => ( x + 4)^2 + 3 lớn hơn bằng 3
VẬy GTNN của bt là 3 khi x + 4 = 0 => x = - 4
Ta có : A = 9x2 - 6x + 2
= 9x2 - 6x + 1 + 1 = (3x - 1)2 + 1 \(\ge\)1
=> Min A = 1
Dấu "=" xảy ra <=> 3x - 1 = 0
<=> x = 1/3
Vậy Min A = 1 <=> x = 1/3
b) Ta có 2B = 4x2 + 4x + 2
= 4x2 + 4x + 1 + 1
= (2x + 1)2 + 1 \(\ge\)1
=> B \(\ge\frac{1}{2}\)
Dấu "=" xảy ra <=> 2x + 1 = 0
<=> x = -1/2
Vậy Min B = 1/2 <=> x = -1/2
c) C = (2x - 1)2 + (x - 2)2
= 5x2 - 8x + 5
=> 5C = 25x2 - 40x + 25
= 25x2 - 40x + 16 + 9
= (5x - 4)2 + 9 \(\ge9\)
=> \(C\ge\frac{9}{5}\)
Dấu "=" xảy ra <=> 5x - 4 = 0
<=> x = 0,8
Vậy Min C = 9/5 <=> x = 0,8
d) D = 3x2 + 5x = \(3\left(x^2+\frac{5}{3}x\right)=3\left(x^2+2.\frac{5}{6}x+\frac{25}{36}-\frac{25}{36}\right)=3\left(x+\frac{5}{6}\right)^2-\frac{25}{12}\ge-\frac{25}{12}\)
=> \(D\ge-\frac{25}{12}\)
Dấu "=" xảy ra <=> x + 5/6 = 0
<=> x = -5/6
Vậy Min D = -25/12 <=> x = -5/6e) E = (x -2)(x - 3)(x + 5)x
= (x2 - 5x + 6)(x2 + 5x)
\(C=\left(23-x\right)\left(3x+5\right)+13\)
\(=69x+115-3x^2-5x+13\)
\(=-3x^2+64x+128\)
\(=-3\left(x^2-\dfrac{64}{3}x+\dfrac{1024}{9}\right)+\dfrac{1408}{3}\)
\(=-3\left(x-\dfrac{32}{3}\right)^2+\dfrac{1408}{3}\le\dfrac{1408}{3}\)
Vậy \(Max_C=\dfrac{1408}{3}\)
Để \(C=\dfrac{1408}{3}\) thì \(x-\dfrac{32}{3}=0\Rightarrow x=\dfrac{32}{3}\)
d, \(D=\left(2-3x\right)\left(3x+5\right)-7\)
\(=6x+10-9x^2-15x-7\)
\(=-9x^2-9x+3\)
\(=-9\left(x^2-x+\dfrac{1}{4}\right)+\dfrac{21}{4}\)
\(=-9\left(x-\dfrac{1}{2}\right)^2+\dfrac{21}{4}\le\dfrac{21}{4}\)
Vậy \(Max_D=\dfrac{21}{4}\) khi \(x-\dfrac{1}{2}=0\Rightarrow x=\dfrac{1}{2}\)
\(x^2+2x+5\)
\(=x^2+2.x.1+1+4\)
\(=\left(x+1\right)^2+4\ge4\)
Min \(=4\Leftrightarrow x+1=0\Rightarrow x=-1\)
Bài 1.
A = 2x2 - x + 4 = 2( x2 - 1/2x + 1/16 ) + 31/8 = 2( x - 1/4 )2 + 31/8 ≥ 31/8 ∀ x
Dấu "=" xảy ra khi x = 1/4
=> MinA = 31/8 <=> x = 1/4
Bài 2.
A = -x2 + 3x + 2 = -( x2 - 3x + 9/4 ) + 17/4 = -( x - 3/2 )2 + 17/4 ≤ 17/4 ∀ x
Dấu "=" xảy ra khi x = 3/2
=> MaxA = 17/4 <=> x = 3/2
B = 3x2 + x - 5 = 3( x2 + 1/3x + 1/36 ) - 61/12 = 3( x + 1/6 )2 - 61/12 ≥ -61/12 ∀ x
Dấu "=" xảy ra khi x = -1/6
=> MinB = -61/12 <=> x = -1/6
C = x2 + 3/2x - 5 = ( x2 + 3/2x + 9/16 ) - 89/16 = ( x + 3/4 )2 - 89/16 ≥ -89/16 ∀ x
Dấu "=" xảy ra khi x = -3/4
=> MinC = -89/16 <=> x= -3/4
a) = [ x( x + 3 ) ][ ( x + 5 )( x - 2 ) ] = ( x2 + 3x )( x2 + 3x - 10 )
= ( x2 + 3x - 5 + 5 )( x2 + 3x - 5 - 5 ) = ( x2 + 3x - 5 )2 - 25 ≥ -25 ∀ x
Dấu "=" xảy ra <=> x2 + 3x - 5 = 0 ( bạn tự giải mình lười quá =)) )
b) = [ ( x - 2 )( x + 4 ) ][ ( x - 3 )( x + 5 ) ] = ( x2 + 2x - 8 )( x2 + 2x - 15 )
Đặt a = x2 + 2x - 8
= a( a - 7 ) = a2 - 7a = ( a2 - 7a + 49/4 ) - 49/4 = ( a - 7/2 )2 - 49/4 = ( x2 + 2x - 23/2 ) - 49/4 ≥ -49/4 ∀ x
Dấu "=" xảy ra <=> x2 + 2x - 23/2 = 0 ( bạn tự giải nốt =) ))