K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

a) Ta có: \(B\left(x\right)=-2x^3+2x^2+12+5x^2-9x\)

\(=-2x^3+7x^2-9x+12\)

b) Ta có: A(x)+B(x)

\(=4x^3-7x^2+3x-12-2x^3+7x^2-9x+12\)

\(=2x^3-6x\)

b) Ta có: A(x)-B(x)

\(=4x^3-7x^2+3x-12+2x^3-7x^2+9x-12\)

\(=6x^3-14x^2+12x-24\)

7 tháng 6 2020

\(P\left(x\right)=3x^5+x^4-2x^2+2x-1\)

\(Q\left(x\right)=-3x^5+2x^2-2x+3\)

\(P\left(x\right)+Q\left(x\right)=3x^5+x^4-2x^2+2x-1-3x^5+2x^2-2x+3\)

\(=x^4+2\)

\(P\left(x\right)-Q\left(x\right)=3x^5+x^4-2x^2+2x-1+3x^5-2x^2+2x-3\)

\(=6x^5+x^4-4x^2+4x-4\)

7 tháng 6 2020

Thu gọn + sắp xếp luôn

P(x) = 3x5 + x4 - 2x2 + 2x - 1

Q(x) = -3x5 + 2x2 - 2x + 3

P(x) + Q(x) = ( 3x5 + x4 - 2x2 + 2x - 1 ) + ( -3x5 + 2x2 - 2x + 3 )

                   = ( 3x5 - 3x5 ) + x4 + ( 2x2 -- 2x2 ) + ( 2x - 2x ) + ( 3 - 1 )

                   = x4 + 2

P(x) - Q(x) = ( 3x5 + x4 - 2x2 + 2x - 1 ) - (  -3x5 + 2x2 - 2x + 3 )

                  = 3x5 + x4 - 2x2 + 2x - 1 + 3x5 - 2x2 + 2x - 3

                  = ( 3x5 + 3x5 ) + x4 + ( -2x2 - 2x2 ) + ( 2x + 2x ) + ( -1 - 3 )

                  = 6x5 + x4 - 4x2 + 4x - 4

3 tháng 4 2018

a) ta có Q=-2x^3+2x^2+12+5^-9x

             Q=-2x^3+(2x^2+5x^2)-9x+12

             Q=-2x^3+7x^2-9x+12

        

9 tháng 6 2021

a) \(A\left(x\right)=-5x^3-2x^2+x+9x^3-2x^2-\left(x-1\right)\)

\(=\left(9x^3-5x^3\right)-\left(2x^2+2x^2\right)+\left(x-x\right)+1\)

\(=4x^3-4x^2+1\)

\(C\left(x\right)=x^3-2x\left(3x+1\right)-4\)

\(=x^3-6x^2-2x-4\)

b) \(A\left(x\right)+C\left(x\right)=4x^3-4x^2+1+x^3-6x^2-2x-4\)

\(=\left(4x^3+x^3\right)-\left(4x^2+6x^2\right)-2x+\left(1-4\right)\)

\(=5x^3-10x^2-2x-3\)

\(A\left(x\right)-C\left(x\right)=4x^3-4x^2+1-\left(x^3-6x^2-2x-4\right)\)

\(=4x^3-4x^2+1-x^3+6x^2+2x+4\)

\(=\left(4x^3-x^3\right)+\left(6x^2-4x^2\right)+2x+\left(1+4\right)\)

\(=3x^3+2x^2+2x+5\)

9 tháng 6 2021

a, \(A\left(x\right)=-5x^3-2x^2+x+9x^3-2x^2-\left(x-1\right)\)

\(=4x^3-4x^2+x-x+1=4x^3-4x^2+1\)

\(C\left(x\right)=x^3-2x\left(3x+1\right)-4=x^3-6x^2-2x-4\)

b, \(A\left(x\right)+C\left(x\right)=5x^3-10x^2-2x-3\)

\(A\left(x\right)-C\left(x\right)=3x^3+2x^2+2x+5\)

11 tháng 4 2019

Bài 1 :

\(M+N\)

\(=\left(2xy^2-3x+12\right)+\left(-xy^2-3\right)\)

\(=2xy^2-3x+12-xy^2-3\)

\(=\left(2xy^2-xy^2\right)-3x+\left(12-3\right)\)

\(=xy^2-3x+9\)

11 tháng 4 2019

gải hộ mình bài 2

24 tháng 4 2018

a, f(x) = -2x\(^3\) + 7 - 6x + 5x\(^4\) - 2x\(^3\)

=5x\(^4\)+(-2x\(^3\)-2x\(^3\))-6x+7

=5x\(^4\)-4x\(^3\)-6x+7

g(x)= 5x\(^2\) + 9x - 2x\(^4\) - x\(^2\)+ 4x\(^3\) -12

=-2x\(^4\)+4x\(^3\)+(5x\(^2\)-x\(^2\))+9x-12

=-2x\(^4\)+4x\(^3\)+4x\(^2\)+9x-12

b,f(x)+g(x)=5x\(^4\)-4x\(^3\)-6x+7+-2x\(^4\)+4x\(^3\)+4x\(^2\)+9x-12

=(5x\(^4\)-2x\(^4\))+(-4x\(^3\)+4x\(^3\))+4x\(^2\)+(-6x+9x)+(7-12)

= 3x\(^4\)+4x\(^2\)+3x-5

1 tháng 5 2023

F(\(x\)) = - 2\(x\)3 + 7 - 6\(x\) + 5\(x^4\) - 2\(x^3\)

F(\(x\)) = (-2\(x^3\) - 2\(x^3\)) + 7 - 6\(x\) + 5\(x^4\)

F(\(x\)) = -4\(x^3\) + 7 - 6\(x\) + 5\(x^4\)

F(\(x\)) = 5\(x^4\) - 4\(x^3\) - 6\(x\) + 7

G(\(x\)) = 5\(x^2\) + 9\(x\) - 2\(x^4\) - \(x^2\) + 4\(x^3\) - 12

G(\(x\)) = (5\(x^2\) - \(x^2\)) + 9\(x\) - 2\(x^4\) + 4\(x^3\) - 12

G(\(x\)) = 4\(x^2\) + 9\(x\) - 2\(x^4\) + 4\(x^3\) - 12

G(\(x\)) = -2\(x^4\) + 4\(x^3\) +4\(x^2\) + 9\(x\) - 12

b, F(\(x\)) + G(\(x\)) = 5\(x^4\) - 4\(x^3\) - 6\(x\) + 7 + ( -2\(x^4\) + 4\(x^3\)+4\(x^2\)+9\(x\)-12)

F(\(x\)) + G(\(x\)) = 5\(x^4\)- 4\(x^3\) - 6\(x\)+ 7 - 2\(x^4\) + 4\(x^3\) + 4\(x^2\) + 9\(x\) - 12

F(\(x\)) + G(\(x\)) = (5\(x^{4^{ }}\) -2\(x^4\)) -(4\(x^3\) - 4\(x^3\)) + 4\(x^2\) + (9\(x\)-6\(x\)) - ( 12 - 7)

F(\(x\)) + G(\(x\)) = 3\(x^4\) + 4\(x^2\) + 3\(x\) - 5

25 tháng 5 2018

a,Q=\(-2x^3+7x^2-9x+12\)

b, \(P+Q=2x^3-6x\)

\(2P-Q=10x^3-21x^2+15x-36\)

c,Xem lại đề bài vì ko tìm đc

chúc bạn hk tốt và nhớ k cho tiu 

25 tháng 5 2018

c/ Tìm no của P và Q

Mình xin chỉnh lại đề: Tìm no của P + Q

Ta có \(P+Q=2x^3-6x\)

=> \(P+Q=2x\left(x^2-3x\right)\)

=> \(P+Q=2x^2\left(x-3\right)\)

Khi P + Q = 0

=> \(2x^2\left(x-3\right)=0\)

=> \(\orbr{\begin{cases}2x^2=0\\x-3=0\end{cases}}\)=> \(\orbr{\begin{cases}x^2=0\\x=3\end{cases}}\)=> \(\orbr{\begin{cases}x=0\\x=3\end{cases}}\)

Vậy P + Q có 2 nghiệm: x1 = 0 và x2 = 3.