Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(1,\Rightarrow3:\dfrac{9}{4}=\dfrac{3}{4}:x\\ \Rightarrow\dfrac{4}{3}=\dfrac{3}{4}:x\\ \Rightarrow x=\dfrac{3}{4}:\dfrac{4}{3}=\dfrac{9}{16}\\ 2,\)
Nửa chu vi là \(50:2=25\left(cm\right)\)
Gọi cd là a, cr là b (cm)(a,b>0)
Ta có \(a:b=3:2\Rightarrow\dfrac{a}{3}=\dfrac{b}{2}\) và \(a+b=25\left(cm\right)\)
Áp dụng t/c dtsbn:
\(\dfrac{a}{3}=\dfrac{b}{2}=\dfrac{a+b}{3+2}=\dfrac{25}{5}=5\\ \Rightarrow\left\{{}\begin{matrix}a=15\\b=10\end{matrix}\right.\)
Vậy ...
Áp dụng tc dtsbn:
\(\dfrac{2y+z-x}{x}=\dfrac{2z-y+x}{y}=\dfrac{2x+y-z}{z}=\dfrac{2x+2y+2z}{x+y+z}=\dfrac{2\left(x+y+z\right)}{x+y+z}=2\\ \Rightarrow\left\{{}\begin{matrix}2y+z-x=2x\\2z-y+x=2y\\2x+y-z=2z\end{matrix}\right.\\ \Rightarrow\left\{{}\begin{matrix}2y+z=3x\\2z+x=3y\\2x+y=3z\end{matrix}\right.\Rightarrow\left\{{}\begin{matrix}3x-2y=z\\3y-2z=x\\3z-2x=y\end{matrix}\right.;\left\{{}\begin{matrix}3x-z=2y\\3y-x=2z\\3z-y=2z\end{matrix}\right.\\ \Rightarrow P=\dfrac{xyz}{2x\cdot2y\cdot2z}=\dfrac{1}{8}\)
Chọn D
a, Vì b và c cùng vuông góc với d nên b//c
b, Vì b//c nên \(\widehat{A}=\widehat{ABc}=120^0\left(so.le.trong\right);\widehat{A}=\widehat{BCa}=120^0\left(đồng.vị\right)\)
Ta có \(\widehat{ABc}+\widehat{ABC}=180^0\left(kề.bù\right)\Rightarrow\widehat{ABC}=180^0-120^0=60^0\)
Ta có \(\widehat{aBc}=\widehat{ABC}=60^0\left(đối.đỉnh\right)\)
vì b//c
=> \(\widehat{DAB}+\widehat{ABC}=180\) ( 2 góc trong cùng phía bù nhau )
=> \(120+\widehat{ABC}=180=>\widehat{ABC}=60\)
=> \(\widehat{ABC}=\widehat{cBa}=60\) ( đối đỉnh)
\(\widehat{ABC}+\widehat{ABc}=180\) ( 2 góc kề bù)
=> \(60+\widehat{ABc}=180=>\widehat{ABc}=120\)
\(\widehat{ABc}=\widehat{aBC}=120\) đối đỉnh
Có
\(\left|x-2\right|+\left|x-4\right|=\left|x-2\right|+\left|4-x\right|\ge\left|x-2+4-x\right|=2\)
\(\left|x-3\right|\ge0\)
=> \(\left|x-2\right|+\left|x-4\right|+\left|x-3\right|\ge2\)
Dấu "=" xảy ra
\(\Leftrightarrow\left\{{}\begin{matrix}x=3\\x-2>0\\4-x>0\end{matrix}\right.\) hoặc \(\left\{{}\begin{matrix}x=3\\x-2< 0\\4-x< 0\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}\left\{{}\begin{matrix}x=3\\x>2\\x< 4\end{matrix}\right.\\\left\{{}\begin{matrix}x=3\\x< 2\\x>4\end{matrix}\right.\end{matrix}\right.\)
\(\Leftrightarrow x=3\)
`69,462...... xấp xỉ 69,5`
vì số thập phân thứ 1 là 4
=> chọn số thập phân thứ 2 là 6 >5
nên `69,462...... xấp xỉ 69,5`
Ta có :
\(f\left(x\right)=x^2-x-x+2\\ \Leftrightarrow x^2-x-x+1+1\\ \Leftrightarrow x\left(x-1\right)-\left(x-1\right)+1\\ \Leftrightarrow\left(x-1\right)^2+1\)
mà : \(\left(x-1\right)^2\ge0\forall x\Rightarrow\left(x-1\right)^2+1\ge1\forall x\)
\(\Rightarrow\) Đa thức vô nghiệm.
Ta có: f(x)=x2+2
Cho f(x)=0 ⇒ x2+2=0 ⇒x2= -2 (vô lý với mọi x )
Vậy f(x)= x2-x-x+2 vô nghiệm (đpcm)
Xin lỗi sai đề .Đề đúng nè
Ta có: f(x)=x2-2x+2
Cho : f(x)=x2-2x+2=0 => f(x)=(x2-2x+1)+1=0
=> f(x)=(x-1)2+1=0 (bất đẳng thức lớp 8 lận đó)
=> f(x)=(x-1)2= -1 (vô lý)
HC=16cm
AB=13cm
=>BC=21cm
=>C=13+20+21=54(cm)
viết câu trả lời dài dài đầy đủ giúp em:')