Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Chỗ kí hiệu : sai r`, sao lại vt là chia hết cho 7, trong khi đg cần tìm số dư
Có: \(20\equiv-1\left(mod7\right)\Rightarrow20^{11}\equiv\left(-1\right)^{11}=-1\left(mod7\right)\left(1\right)\)
\(22\equiv1\left(mod7\right)\Rightarrow22^{12}\equiv1\left(mod7\right)\left(2\right)\)
\(1996\equiv1\left(mod7\right)\Rightarrow1996^{1997}\equiv1\left(mod7\right)\left(3\right)\)
Từ (1); (2) và (3) \(\Rightarrow A=20^{11}+22^{12}+1996^{1997}\equiv-1+1+1=1\left(mod7\right)\)
Vậy số dư khi chia A cho 7 là 1
xét mọi số chính phương đều có thể viết dưới dạng :
\(\left(a\cdot n+b\right)^2\) với mọi số \(a,b\) là các số tự nhiên và b nhở hơn n
mà ta có :
\(\left(a\cdot n+b\right)^2=a^2\cdot n^2+2ab\cdot n+b^2\equiv b^2mod\left(n\right)\)
vậy \(b^2< n\forall b< n\)điều này chỉ đúng khi n=2
vậy n=2
Em tham khảo bài tương tự tại đây nhé.
Câu hỏi của Lưu Đức Mạnh - Toán lớp 8 - Học toán với OnlineMath
Vì xy = 1
Suy ra : x , y thuộc Ư(1) = {-1;1}
+ x = -1 và y = -1 thì GTNN của |x + y| = 0
+ x = 1 và y = 1 thì GTNN của |x + y| = 2
Vậy GTNN của |x + y| = 0
3x(x-1)=1-x
<=> 3x(x-1) +x-1=0
<=> (x-1)(3x+1)=0
\(\Rightarrow\orbr{\begin{cases}x-1=0\\3x+1=0\end{cases}\Leftrightarrow\orbr{\begin{cases}x=1\\x=-\frac{1}{3}\end{cases}}}\)
Vậy...
Ta có :
\(A=\frac{x^2+x+1}{\left(x+1\right)^2}\)
\(A=\frac{x^2+2x+1-x-1+1}{x^2+2x+1}\)
\(A=\frac{x^2+2x+1}{\left(x+1\right)^2}+\frac{-x-1}{\left(x+1\right)^2}+\frac{1}{\left(x+1\right)^2}\)
\(A=\frac{\left(x+1\right)^2}{\left(x+1\right)^2}-\frac{x+1}{\left(x+1\right)^2}+\frac{1^2}{\left(x+1\right)^2}\)
\(A=1-\frac{1}{x+1}+\left(\frac{1}{x+1}\right)^2\)
Đặt \(a=\frac{1}{x+1}\) ta có :
\(A=1-a+a^2\)
\(A=a^2-a+1\)
\(A=\left(a^2-a+\frac{1}{4}\right)+\frac{3}{4}\)
\(A=\left(a-\frac{1}{2}\right)^2+\frac{3}{4}\ge\frac{3}{4}\)
Dấu "=" xảy ra khi và chỉ khi \(\left(a-\frac{1}{2}\right)^2=0\)
\(\Leftrightarrow\)\(a-\frac{1}{2}=0\)
\(\Leftrightarrow\)\(a=\frac{1}{2}\)
Do đó :
\(a=\frac{1}{x+1}\)
\(\Leftrightarrow\)\(\frac{1}{2}=\frac{1}{x+1}\)
\(\Leftrightarrow\)\(x+1=2\)
\(\Leftrightarrow\)\(x=1\)
Vậy GTNN của \(A\) là \(\frac{3}{4}\) khi \(x=1\)
Chúc bạn học tốt ~
\(4x^2-4\)
\(=4\left(x^2-1\right)\)
\(=4\left(x-1\right)\left(x+1\right)\)
\(\frac{2}{x-2}-\frac{3}{x+2}=\frac{x+1}{x^2-4}\left(x\ne\pm2\right)\)
\(\Leftrightarrow\frac{2}{x-2}-\frac{3}{x+2}-\frac{x+1}{x^2-4}=0\)
\(\Leftrightarrow\frac{2}{x-2}-\frac{3}{x+2}-\frac{x+1}{\left(x-2\right)\left(x+2\right)}=0\)
\(\Leftrightarrow\frac{2\left(x+2\right)}{\left(x-2\right)\left(x+2\right)}-\frac{3\left(x-2\right)}{\left(x-2\right)\left(x+2\right)}-\frac{x+1}{\left(x-2\right)\left(x+2\right)}=0\)
\(\Leftrightarrow\frac{2x+4-3x+6-x-1}{\left(x-2\right)\left(x+2\right)}=0\)
\(\Leftrightarrow\frac{-2x-9}{\left(x-2\right)\left(x+2\right)}=0\)
=> -2x-9=0
<=> -2x=9
<=> \(x=\frac{-9}{2}\left(tmđk\right)\)
a) \(A=\left(x+3\right)^2+\left(x-3\right)\left(x+3\right)-2\left(x+2\right)\left(x-4\right)\)
\(\Leftrightarrow A=x^2+6x+9+x^2+3x-3x-9-2\left(x^2-4x+2x-8\right)\)
\(\Leftrightarrow A=x^2+6x+9+x^2+3x-3x-9-2x^2+8x-4x+16\)
\(\Leftrightarrow A=10x+16\)
Thay \(x=-\frac{1}{2}\) vào biểu thức ta có:
\(A=10.\frac{-1}{2}+16=11\)
Vậy...
b) \(B=\left(3x+4\right)^2-\left(x-4\right)\left(x+4\right)-10x\)
\(\Leftrightarrow B=9x^2+24x+16-\left(x^2+4x-4x-16\right)-10x\)
\(\Leftrightarrow B=9x^2+24x+16-x^2-4x+4x+16-10x\)
\(\Leftrightarrow B=8x^2+14x+32\)
Thay \(x=-\frac{1}{10}\) vào biểu thức ta có:
\(8.\left(\frac{-1}{10}\right)^2+14.\frac{-1}{10}+32=\frac{767}{25}\)
c) \(C=\left(x+1\right)^2-\left(2x-1\right)^2+3\left(x-2\right)\left(x+2\right)\)
\(\Leftrightarrow C=x^2+2x+1-\left(4x^2-4x+1\right)+3\left(x^2+2x-2x-4\right)\)
\(\Leftrightarrow C=x^2+2x+1-4x^2+4x-1+3x^2+6x-6x-12\)
\(\Leftrightarrow C=6x-12\)
Thay x=1 vào biểu thức ta có:
\(6.1-12=-6\)
Vậy....
d) \(D=\left(x-3\right)\left(x+3\right)+\left(x-2\right)^2-2x\left(x-4\right)\)
\(\Leftrightarrow D=x^2+3x-3x-9+x^2-4x+4-2x^2+8x\)
\(\Leftrightarrow D=4x-5\)
Thay x=-1 vào biểu thức ta có:
4.(-1)-5=-9
Vậy....