Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Chỗ kí hiệu : sai r`, sao lại vt là chia hết cho 7, trong khi đg cần tìm số dư
Có: \(20\equiv-1\left(mod7\right)\Rightarrow20^{11}\equiv\left(-1\right)^{11}=-1\left(mod7\right)\left(1\right)\)
\(22\equiv1\left(mod7\right)\Rightarrow22^{12}\equiv1\left(mod7\right)\left(2\right)\)
\(1996\equiv1\left(mod7\right)\Rightarrow1996^{1997}\equiv1\left(mod7\right)\left(3\right)\)
Từ (1); (2) và (3) \(\Rightarrow A=20^{11}+22^{12}+1996^{1997}\equiv-1+1+1=1\left(mod7\right)\)
Vậy số dư khi chia A cho 7 là 1
c, Ta có : \(2x^2+2x+3x+3=0\)
\(\Leftrightarrow2x\left(x+1\right)+3\left(x+1\right)=0\)
\(\Leftrightarrow\left(2x+3\right)\left(x+1\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x=-\dfrac{3}{2}\\x=-1\end{matrix}\right.\)
Vậy ...
d, Ta có : \(\dfrac{3-2x}{2006}+\dfrac{3-2x}{2007}+\dfrac{3-2x}{2008}=\dfrac{3-2x}{2009}+\dfrac{3-2x}{2010}\)
\(\Leftrightarrow\dfrac{3-2x}{2006}+\dfrac{3-2x}{2007}+\dfrac{3-2x}{2008}-\dfrac{3-2x}{2009}-\dfrac{3-2x}{2010}=0\)
\(\Leftrightarrow\left(3-2x\right)\left(\dfrac{1}{2006}+\dfrac{1}{2007}+\dfrac{1}{2008}-\dfrac{1}{2009}-\dfrac{1}{2010}\right)=0\)
\(\Leftrightarrow3-2x=0\)
\(\Leftrightarrow x=\dfrac{3}{2}\)
Vậy ...
a) Ta có: \(\left(3x-2\right)\left(4x+3\right)=\left(2-3x\right)\left(x-1\right)\)
\(\Leftrightarrow\left(3x-2\right)\left(4x+3\right)-\left(2-3x\right)\left(x-1\right)=0\)
\(\Leftrightarrow\left(3x-2\right)\left(4x+3\right)+\left(3x-2\right)\left(x-1\right)=0\)
\(\Leftrightarrow\left(3x-2\right)\left(4x+3+x-1\right)=0\)
\(\Leftrightarrow\left(3x-2\right)\left(5x+2\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}3x-2=0\\5x+2=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}3x=2\\5x=-2\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=\dfrac{2}{3}\\x=-\dfrac{2}{5}\end{matrix}\right.\)
Vậy: \(S=\left\{\dfrac{2}{3};-\dfrac{2}{5}\right\}\)
b) Ta có: \(x^2+\left(x+3\right)\left(5x-7\right)=9\)
\(\Leftrightarrow x^2+5x^2-7x+15x-21-9=0\)
\(\Leftrightarrow6x^2+8x-30=0\)
\(\Leftrightarrow6x^2+18x-10x-30=0\)
\(\Leftrightarrow6x\left(x+3\right)-10\left(x+3\right)=0\)
\(\Leftrightarrow\left(x+3\right)\left(6x-10\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x+3=0\\6x-10=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=-3\\6x=10\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=-3\\x=\dfrac{5}{3}\end{matrix}\right.\)
Vậy: \(S=\left\{-3;\dfrac{5}{3}\right\}\)
a) \(A=3\left(x-1\right)^2-\left(x+1\right)^2+2\left(x-3\right)\left(x+3\right)-\left(2x+3\right)^2-\left(5-20x\right)\)
\(=\left(3x^2-6x+3\right)-\left(x^2+2x+1\right)+2\left(x^2-9\right)-\left(4x^2+12x+9\right)-5+20x\)
\(=-30\)
b) \(B=-x\left(x+2\right)^2+\left(2x+1\right)^2+\left(x+3\right)\left(x^2-3x+9\right)-1\)
\(=-x\left(x^2+4x+4\right)+\left(4x^2+4x+1\right)+\left(x^3-3x^2+9x+3x^2-9x+27\right)-1\)
\(=27\)
a: Ta có: \(A=3\left(x-1\right)^2-\left(x+1\right)^2+2\left(x-3\right)\left(x+3\right)-\left(2x+3\right)^2-\left(5-20x\right)\)
\(=3x^2-6x+3-x^2-2x-1+2x^2-18-4x^2-12x-9-5+20x\)
\(=-30\)
b: Ta có: \(B=-x\left(x+2\right)^2+\left(2x+1\right)^2+\left(x+3\right)\left(x^2-3x+9\right)-1\)
\(=-x^3-4x^2-4x+4x^2+4x+1+x^3+27-1\)
=27
XXét tứ giác AMDN có ^AMD=^MAN=^AND=90∞
⇒AMDN là hình chữ nhật
hcn AMDN có AD là phân giác góc A
⇒AMDN là hình vuông(dấu hiệu 3)
xét mọi số chính phương đều có thể viết dưới dạng :
\(\left(a\cdot n+b\right)^2\) với mọi số \(a,b\) là các số tự nhiên và b nhở hơn n
mà ta có :
\(\left(a\cdot n+b\right)^2=a^2\cdot n^2+2ab\cdot n+b^2\equiv b^2mod\left(n\right)\)
vậy \(b^2< n\forall b< n\)điều này chỉ đúng khi n=2
vậy n=2
Bài 3:
a: Ta có: \(x^2+5x+5xy+25y\)
\(=x\left(x+5\right)+5y\left(x+5\right)\)
\(=\left(x+5\right)\left(x+5y\right)\)
b: Ta có: \(x^2-y^2+14x+49\)
\(=\left(x+7\right)^2-y^2\)
\(=\left(x+7-y\right)\left(x+7+y\right)\)
a: ĐKXĐ: \(x\notin\left\{10;-10;\sqrt{10};-\sqrt{10}\right\}\)
b: \(A=\dfrac{5x^3+50x+2x^2+20+5x^3-50x-2x^2+20}{\left(x^2-10\right)\left(x^2+10\right)}\cdot\dfrac{x^2-100}{x^2+4}\)
\(=\dfrac{10x^3+40}{\left(x^2-10\right)\left(x^2+10\right)}\cdot\dfrac{x^2-100}{x^2+4}\)
Ta có : \(\left(3x-2\right)\left(4x+3\right)=\left(2-3x\right)\left(x-1\right)\)
\(\Leftrightarrow12x^2-8x+9x-6=2x-3x^2-2+3x\)
\(\Leftrightarrow12x^2-8x+9x-6-2x+3x^2+2-3x=0\)
\(\Leftrightarrow15x^2-4x-4=0\)
\(\Leftrightarrow15x^2-10x+6x-4=0\)
Lỗi :vvvv
\(\Leftrightarrow10x\left(\dfrac{3}{2}x-1\right)+4\left(\dfrac{3}{2}x-1\right)=0\)
\(\Leftrightarrow\left(10x+4\right)\left(\dfrac{3}{2}x-1\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x=-\dfrac{2}{5}\\x=\dfrac{2}{3}\end{matrix}\right.\)
Vậy ...
a) \(A=\left(x+3\right)^2+\left(x-3\right)\left(x+3\right)-2\left(x+2\right)\left(x-4\right)\)
\(\Leftrightarrow A=x^2+6x+9+x^2+3x-3x-9-2\left(x^2-4x+2x-8\right)\)
\(\Leftrightarrow A=x^2+6x+9+x^2+3x-3x-9-2x^2+8x-4x+16\)
\(\Leftrightarrow A=10x+16\)
Thay \(x=-\frac{1}{2}\) vào biểu thức ta có:
\(A=10.\frac{-1}{2}+16=11\)
Vậy...
b) \(B=\left(3x+4\right)^2-\left(x-4\right)\left(x+4\right)-10x\)
\(\Leftrightarrow B=9x^2+24x+16-\left(x^2+4x-4x-16\right)-10x\)
\(\Leftrightarrow B=9x^2+24x+16-x^2-4x+4x+16-10x\)
\(\Leftrightarrow B=8x^2+14x+32\)
Thay \(x=-\frac{1}{10}\) vào biểu thức ta có:
\(8.\left(\frac{-1}{10}\right)^2+14.\frac{-1}{10}+32=\frac{767}{25}\)
c) \(C=\left(x+1\right)^2-\left(2x-1\right)^2+3\left(x-2\right)\left(x+2\right)\)
\(\Leftrightarrow C=x^2+2x+1-\left(4x^2-4x+1\right)+3\left(x^2+2x-2x-4\right)\)
\(\Leftrightarrow C=x^2+2x+1-4x^2+4x-1+3x^2+6x-6x-12\)
\(\Leftrightarrow C=6x-12\)
Thay x=1 vào biểu thức ta có:
\(6.1-12=-6\)
Vậy....
d) \(D=\left(x-3\right)\left(x+3\right)+\left(x-2\right)^2-2x\left(x-4\right)\)
\(\Leftrightarrow D=x^2+3x-3x-9+x^2-4x+4-2x^2+8x\)
\(\Leftrightarrow D=4x-5\)
Thay x=-1 vào biểu thức ta có:
4.(-1)-5=-9
Vậy....