Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(x+2x+3x+4x+.....+2011x=2012.2013\)
\(1x+2x+3x+4x+.....+2011x=2012.2013\)
\(1x+2x+3x+4x+.....+2011x=4050156\)
\(x(1+2+3+4+.....+2011)=4050156\)
\(x.2011.(2011+1):2=4050156\)
\(x.2023066=4050156\)
\(x=4050156:2023066\)
\(x=2...............\)
Ta có
x + 2x + 3x + 4x + 5x + ... + 2011x = 2012.2013
x + 2x + 3x + 4x + 5x + ... + 2011x = 4050156
x(2 + 3 + 4 + ... + 2011) = 4050156
x.2023066 = 40501156
x = 40501156 : 2023066
x = 20,...
a) \(\frac{3}{4}x-\frac{1}{4}=2\left(x-3\right)+\frac{1}{4}x\)
\(\frac{3}{4}x-\frac{1}{4}=2x-6+\frac{1}{4}x\)
\(\frac{3}{4}x-2x-\frac{1}{4}x=\frac{1}{4}-6\)
\(x\left(\frac{3}{4}-2-\frac{1}{4}\right)=-\frac{23}{4}\)
\(-\frac{3}{2}x=-\frac{23}{4}\)
\(x=-\frac{23}{4}\div\left(-\frac{3}{2}\right)\)
\(x=\frac{23}{6}\)
a, \(x+4⋮x+1\)
\(\Rightarrow x+1+3⋮x+1\)
\(\Rightarrow3⋮x+1\)
\(\Rightarrow x+1\inƯ\left(3\right)\)
\(x+1\in\left\{\pm1;\pm3\right\}\)
\(x\in\left\{0;-2;2;-3\right\}\)
b , ( x - 2 ) là ước của (4x + 3 )
\(\Rightarrow4x+3⋮x-2\)
\(\Rightarrow4x+3⋮4\left(x-2\right)\)
\(\Rightarrow4x+3⋮4x-8\)
\(4x-8+11⋮4x-8\)
\(\Rightarrow11⋮4x-8\)
\(\Rightarrow4x-8\inƯ\left(11\right)\)
\(4x-8\in\left\{\pm1;\pm11\right\}\)
\(4x\in\left\{9;7;19;-3\right\}\)
\(\Rightarrow x\in\left\{\frac{9}{4};\frac{7}{4};\frac{19}{4};\frac{-3}{4}\right\}\)
Mà \(x\in Z\Rightarrow x\in\varnothing\)
a) \(\left(x+4\right)⋮\left(x+1\right)\)
\(\Leftrightarrow\left(x+1+3\right)⋮\left(x+1\right)\)
Vì \(\left(x+1\right)⋮\left(x+1\right)\) nên \(3⋮\left(x+1\right)\)
\(\Rightarrow x+1\inƯ\left(3\right)=\left\{\pm1;\pm3\right\}\)
Ta có bảng sau :
\(x+1\) | \(1\) | \(-1\) | \(3\) | \(-3\) |
\(x\) | \(0\) | \(-2\) | \(2\) | \(-4\) |
Vậy \(x\in\left\{-4;-2;0;2\right\}\) thì \(\left(x+4\right)⋮\left(x+1\right)\)
b)( x - 2 ) là ước của ( 4x + 3 )
\(\Leftrightarrow\left(4x+3\right)⋮\left(x-2\right)\)
\(\Leftrightarrow\left(4x-8+11\right)⋮\left(x-2\right)\)
\(\Leftrightarrow\left[4\left(x-2\right)+11\right]⋮\left(x-2\right)\)
Vì \(\left[4\left(x-2\right)\right]⋮\left(x-2\right)\) nên \(11⋮\left(x-2\right)\)
\(\Leftrightarrow x-2\inƯ\left(11\right)=\left\{\pm1;\pm11\right\}\)
Ta có bảng sau :
\(x-2\) | \(1\) | \(-1\) | \(-11\) | \(11\) |
\(x\) | \(3\) | \(1\) | \(-9\) | \(13\) |
Vậy \(n\in\left\{-9;1;3;13\right\}\) thì ( x - 2 ) là ước của ( 4x + 3 )
\(\Rightarrow\)x+2\(\in\)Ư(9)
Ư(9)={\(\pm1\); \(\pm3\); \(\pm9\)}
\(\Rightarrow\)x+2\(\in\left\{\pm1;\pm3;\pm9\right\}\)
\(\Rightarrow\)x\(\in\left\{\pm1;-3;-5;-11;7\right\}\)
Vậy x\(\in\left\{\pm1;-3;-5;-11;7\right\}\)
Bài 1: a) \(-2.\left(2x-8\right)+3.\left(4-2x\right)=\left(-72\right)-5.\left(3x-7\right)\)
\(-4x+16+12-6x=-72-15x+35\)
\(-4x-6x+15x=-72+35-16-12\)
\(5x=-65\)
\(x=-\frac{65}{5}\)
\(x=-13\)
b) \(3.\left|2x^2-7\right|=33\)
\(\left|2x^2-7\right|=\frac{33}{3}=11\)
\(\Rightarrow\orbr{\begin{cases}2x^2-7=11\\2x^2-7=-11\end{cases}\Rightarrow\orbr{\begin{cases}2x^2=18\\2x^2=-4\end{cases}\Rightarrow}\orbr{\begin{cases}x^2=9\\x^2=-2\left(vl\right)\end{cases}\Rightarrow}\orbr{\begin{cases}x=\pm3\\\end{cases}}}\)
Bài 2:
Ta có: \(2n+1⋮n-3\)
\(2n-6+7⋮n-3\)
\(2\left(n-3\right)+7⋮n-3\)
Vì \(2\left(n-3\right)⋮n-3\)
Để \(2\left(n-3\right)+7⋮n-3\)
Thì \(7⋮n-3\Rightarrow n-3\inƯ\left(7\right)=\left\{\pm1;\pm7\right\}\)
n-3 | -1 | 1 | 7 | -7 |
n | 2 | 4 | 10 | -4 |
Vậy.....
hok tốt!!
\(3^{2x+2}=3^{2\left(x+3\right)}\)
=> 2x + 2 = 2 ( x+ 3 )
=> 2x + 2 = 2x + 6
=> 2x - 2x = 6 - 2
=> 0x = 4 ( loại )
Vậy không có số x thỏa mãn
Ta có:
9x+3=(32)x+3=32x+6=32x+2
=> 2x+6=2x+2 (vô lý)
Vậy ko có số x thỏa mãn
=\(\frac{4026}{2011}\)