Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
-10+(-9)+(-8)+...+7+8
= (-10)+(-9)+[(-8)+8]+[(-7)+7]+...+0
= (-10)+(-9)+0+0+0+0+0+0+0+0+0
= (-19)
Ta có:4(x+2) chia hết cho x+1
=>4x+8 chia hết cho x+1
=>4x+4+4 chia hết cho x+1
=>4(x+1)+4 chia hết cho x+1
Mà 4(x+1) chia hết cho x+1
=>4 chia hết cho x+1
=>x+1\(\in\)Ư(4)={-4,-2,-1,1,2,4}
=>x\(\in\){-5,-3,-2,0,1,3}
có cái cc ý, ở đâu thằng Khoa chó kia,,,,hâhahahs mai tao nói vs thầy nhá!!!!bạn bè mà đôi khi phản tí!!!!hìhì,,,vui lắm đây<<<3 ngày nx sẽ có cái đó về con Hương quay bàiiiii!!!Huơng sẽ tl thek nào,,,thật đơn giản là tao chỉ nói nó là''viết đè lên vở mak quay tạm''k ngờ lợi dụng bốc thâtjjj,,,cú ức chế lắm rồi thằng Hậu chó nó lẻo mép làm đến tai con M.Hương là kiểu j chết cả lũ chúng mk,,,,tao cx quay nhưng do hối lộ nên Hậu k mách!!ahahhahhaha,tội nghiệp con Hương bị sui dại ,,.;;vui quá!!!!!!
Bài 1:
a,-10<x<8
+ Vì x thuộc Z, -10< x < 8
=> x\(\in\){-9;-8;-7;...;6;7}
+Tổng các số nguyên x là:
(-9)+(-8)+(-7)+...+6+7
=(-8+0)+(-9+9)+(-7+7)+...+(-1+1)
= (-8)+ 0 + 0 +...+0
=-8
c,|x|<6
+Vì x thuộc Z,|x|<6,-6\(\le\)x\(\le\)6
=>x\(\in\){-6;6;-5;5;-4;4;-3;3;-2;2;-1;1;0}
+Tổng các số nguyên x là:
(-6)+6+(-5)+5+(-4)+4+(-3)+3+(-2)+2+(-1)+1+0
=(-6+6)+(-5+5)+(-4+4)+(-3+3)+(-2+2)+(-1+1)+0
= 0 + 0 + 0 + 0 + 0 + 0 +0
=0
c,Làm tương tự như câu "b"
k cho mk nha
a) Để \(-1:x\)là số nguyên
\(\Rightarrow\)\(x\inƯ\left(-1\right)\in\left\{\pm1\right\}\)
Vậy \(x\in\left\{-1;1\right\}\)
b) Để \(1:x+1\)là số nguyên
\(\Rightarrow\)\(x+1\inƯ\left(1\right)\in\left\{\pm1\right\}\)
+ \(x+1=1\)\(\Leftrightarrow\)\(x=1-1=0 \left(TM\right)\)
+ \(x+1=-1\)\(\Leftrightarrow\)\(x=-1-1=-2\left(TM\right)\)
Vậy \(x\in\left\{-2; 0\right\}\)
c) Để \(-2:x\)là số nguyên
\(\Rightarrow\)\(x\inƯ\left(-2\right)\in\left\{\pm1;\pm2\right\}\)
Vậy \(x\in\left\{-1;-2;1;2\right\}\)
d) Để \(3:x-2\)là số nguyên
\(\Rightarrow\)\(x-2\inƯ\left(3\right)\in\left\{\pm1;\pm3\right\}\)
- Ta có bảng giá trị:
\(x-2\) | \(-1\) | \(1\) | \(-3\) | \(3\) |
\(x\) | \(1\) | \(3\) | \(-1\) | \(5\) |
\(\left(TM\right)\) | \(\left(TM\right)\) | \(\left(TM\right)\) | \(\left(TM\right)\) |
Vậy \(x\in\left\{-1;1;3;5\right\}\)
e) Ta có: \(x+8=\left(x-7\right)+15\)
- Để \(x+8⋮x-7\)\(\Leftrightarrow\)\(\left(x-7\right)+15⋮x-7\)mà \(x-7⋮x-7\)
\(\Rightarrow\)\(15⋮x-7\)\(\Rightarrow\)\(x-7\in\left\{\pm1;\pm3;\pm5;\pm15\right\}\)
- Ta có bảng giá trị:
\(x-7\) | \(-1\) | \(1\) | \(-3\) | \(3\) | \(-5\) | \(5\) | \(-15\) | \(15\) |
\(x\) | \(6\) | \(8\) | \(4\) | \(10\) | \(2\) | \(12\) | \(-8\) | \(22\) |
\(\left(TM\right)\) | \(\left(TM\right)\) | \(\left(TM\right)\) | \(\left(TM\right)\) | \(\left(TM\right)\) | \(\left(TM\right)\) | \(\left(TM\right)\) | \(\left(TM\right)\) |
Vậy \(x\in\left\{-8;2;4;6;8;10;12;22\right\}\)
f) Ta có: \(2x+9=\left(2x-10\right)+19=2.\left(x-5\right)+19\)
- Để \(2x+9⋮x-5\)\(\Leftrightarrow\)\(2.\left(x-5\right)+19⋮x-5\)mà \(2.\left(x-5\right)⋮x-5\)
\(\Rightarrow\)\(19⋮x-5\)\(\Rightarrow\)\(x-5\inƯ\left(19\right)\in\left\{\pm1;\pm19\right\}\)
- Ta có bảng giá trị:
\(x-5\) | \(-1\) | \(1\) | \(-19\) | \(19\) |
\(x\) | \(4\) | \(6\) | \(-14\) | \(24\) |
\(\left(TM\right)\) | \(\left(TM\right)\) | \(\left(TM\right)\) | \(\left(TM\right)\) |
Vậy \(x\in\left\{-14;4;6;24\right\}\)
g) Ta có: \(2x+16=\left(2x-16\right)+32=2.\left(x-8\right)+32\)
- Để \(2x+16⋮x-8\)\(\Leftrightarrow\)\(2.\left(x-8\right)+32⋮x-8\)mà \(2.\left(x-8\right)⋮x-8\)
\(\Rightarrow\)\(32⋮x-8\)\(\Rightarrow\)\(x-8\inƯ\left(32\right)\in\left\{\pm1;\pm2;\pm4;\pm8;\pm16;\pm32\right\}\)
- Ta có bảng giá trị:
\(x-8\) | \(-1\) | \(1\) | \(-2\) | \(2\) | \(-4\) | \(4\) | \(-8\) | \(8\) | \(-16\) | \(16\) | \(-32\) | \(32\) |
\(x\) | \(7\) | \(9\) | \(6\) | \(10\) | \(4\) | \(12\) | \(0\) | \(16\) | \(-8\) | \(24\) | \(-24\) | \(40\) |
\(\left(TM\right)\) | \(\left(TM\right)\) | \(\left(TM\right)\) | \(\left(TM\right)\) | \(\left(TM\right)\) | \(\left(TM\right)\) | \(\left(TM\right)\) | \(\left(TM\right)\) | \(\left(TM\right)\) | \(\left(TM\right)\) | \(\left(TM\right)\) | \(\left(TM\right)\) |
Vậy \(x\in\left\{-24;-8;0;4;6;7;9;10;12;16;24;40\right\}\)
h) Ta có: \(5x+2=\left(5x-5\right)+7=5.\left(x-1\right)+7\)
- Để \(5x+2⋮x-1\)\(\Leftrightarrow\)\(5.\left(x-1\right)+7⋮x-1\)mà \(5.\left(x-1\right)⋮x-1\)
\(\Rightarrow\)\(7⋮x-1\)\(\Rightarrow\)\(x-1\inƯ\left(7\right)\in\left\{\pm1;\pm7\right\}\)
- Ta có bảng giá trị:
\(x-1\) | \(-1\) | \(1\) | \(-7\) | \(7\) |
\(x\) | \(0\) | \(2\) | \(-6\) | \(8\) |
\(\left(TM\right)\) | \(\left(TM\right)\) | \(\left(TM\right)\) | \(\left(TM\right)\) |
Vậy \(x\in\left\{-6;0;2;8\right\}\)
k) Ta có: \(3x=\left(3x-6\right)+6=3.\left(x-2\right)+6\)
- Để \(3x⋮x-2\)\(\Leftrightarrow\)\(3.\left(x-2\right)+6⋮x-2\)mà \(3.\left(x-2\right)⋮x-2\)
\(\Rightarrow\)\(6⋮x-2\)\(\Rightarrow\)\(x-2\inƯ\left(6\right)\in\left\{\pm1;\pm2;\pm3;\pm6\right\}\)
- Ta có bảng giá trị:
\(x-2\) | \(-1\) | \(1\) | \(-2\) | \(2\) | \(-3\) | \(3\) | \(-6\) | \(6\) |
\(x\) | \(1\) | \(3\) | \(0\) | \(4\) | \(-1\) | \(5\) | \(-4\) | \(8\) |
\(\left(TM\right)\) | \(\left(TM\right)\) | \(\left(TM\right)\) | \(\left(TM\right)\) | \(\left(TM\right)\) | \(\left(TM\right)\) | \(\left(TM\right)\) | \(\left(TM\right)\) |
Vậy \(x\in\left\{-4;-1;0;1;3;4;5;8\right\}\)
a) Vì -7 là B(x+8) nên:
\(\Rightarrow x+8\inƯ\left(-7\right)\)
\(\Rightarrow x+8\in\left\{-7;-1;1;7\right\}\)
\(\Rightarrow x\in\left\{-15;-9;-7;-1\right\}\)
Hok tốt nha^^
\(\left(x-3\right)\left(2x+4\right)=0\)
\(\Leftrightarrow\orbr{\begin{cases}x-3=0\\2x+4=0\end{cases}}\)
\(\Leftrightarrow\orbr{\begin{cases}x=3\\x=-2\end{cases}}\)
\(\left(x^2+3\right)\left(2x^2-50\right)=0\)
\(\Leftrightarrow\orbr{\begin{cases}x^2+3=0\\2x^2-50=0\end{cases}}\)
\(\Leftrightarrow\orbr{\begin{cases}x^2=-3\left(loại\right)\\x^2=25\end{cases}}\)
\(\Rightarrow x=\pm5\)<=>x=-5 hoặc x=5
a, \(x+4⋮x+1\)
\(\Rightarrow x+1+3⋮x+1\)
\(\Rightarrow3⋮x+1\)
\(\Rightarrow x+1\inƯ\left(3\right)\)
\(x+1\in\left\{\pm1;\pm3\right\}\)
\(x\in\left\{0;-2;2;-3\right\}\)
b , ( x - 2 ) là ước của (4x + 3 )
\(\Rightarrow4x+3⋮x-2\)
\(\Rightarrow4x+3⋮4\left(x-2\right)\)
\(\Rightarrow4x+3⋮4x-8\)
\(4x-8+11⋮4x-8\)
\(\Rightarrow11⋮4x-8\)
\(\Rightarrow4x-8\inƯ\left(11\right)\)
\(4x-8\in\left\{\pm1;\pm11\right\}\)
\(4x\in\left\{9;7;19;-3\right\}\)
\(\Rightarrow x\in\left\{\frac{9}{4};\frac{7}{4};\frac{19}{4};\frac{-3}{4}\right\}\)
Mà \(x\in Z\Rightarrow x\in\varnothing\)
a) \(\left(x+4\right)⋮\left(x+1\right)\)
\(\Leftrightarrow\left(x+1+3\right)⋮\left(x+1\right)\)
Vì \(\left(x+1\right)⋮\left(x+1\right)\) nên \(3⋮\left(x+1\right)\)
\(\Rightarrow x+1\inƯ\left(3\right)=\left\{\pm1;\pm3\right\}\)
Ta có bảng sau :
Vậy \(x\in\left\{-4;-2;0;2\right\}\) thì \(\left(x+4\right)⋮\left(x+1\right)\)
b)( x - 2 ) là ước của ( 4x + 3 )
\(\Leftrightarrow\left(4x+3\right)⋮\left(x-2\right)\)
\(\Leftrightarrow\left(4x-8+11\right)⋮\left(x-2\right)\)
\(\Leftrightarrow\left[4\left(x-2\right)+11\right]⋮\left(x-2\right)\)
Vì \(\left[4\left(x-2\right)\right]⋮\left(x-2\right)\) nên \(11⋮\left(x-2\right)\)
\(\Leftrightarrow x-2\inƯ\left(11\right)=\left\{\pm1;\pm11\right\}\)
Ta có bảng sau :
Vậy \(n\in\left\{-9;1;3;13\right\}\) thì ( x - 2 ) là ước của ( 4x + 3 )