Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Bài toán này bạn chỉ cần quan tâm đến phương án D là đúng thôi, vì để chứng minh B, C sai thì lại tương đối phức tạp, không cần thiết.
Theo giả thiết uC trễ pha pi/2 so vơi u --> u cùng pha với i --> Cộng hưởng, cường độ dòng điện đạt cực đại.
Vậy khi tăng f thì cường độ I giảm.
Chọn D.
Bài 1:
Để công suát tiêu thụ trê mạch cực đại thì:
\((R+r)^2=(R_1+r)(R_1+r)\)
\(\Rightarrow (R+10)^2=(15+10)(39+10)\)
\(\Rightarrow R=25\Omega\)
Bài 2: Có hình vẽ không bạn? Vôn kế đo hiệu điện thế của gì vậy?
Dựa vào giản đồ xét tam giác vuông OAB có
\(\sin60=\frac{Uc}{U_{ }AB}\Rightarrow U_C=100.\sin60=50\sqrt{3}V\Rightarrow Z_C=\frac{U_C}{I}=\frac{50\sqrt{3}}{0.5}=100\sqrt{3}\Omega\)
=> \(C=\frac{1}{Z_C.\omega}\)
\(\cos60=\frac{U_R}{U_{AB}}\Rightarrow U_R=50\Omega\Rightarrow R=\frac{U_R}{I}=100\Omega\)
2. Công suất trên mạch có biểu thức
\(P=I^2R=\frac{U^2}{R^2+\left(Z_L-Z_C\right)^2}.R\\=\frac{U^2}{R^{ }+\frac{\left(Z_L-Z_C\right)^2}{R}}\)
L thay đổi để P max <=> Mẫu Min => áp dụng bất đẳng thức cô-si cho hai số không âm=> \(R=\left|Z_L-Z_C\right|\)
=> \(R=100-40=60\Omega\)
=>
Ud Uc Um 120V 120V 45 45
Từ giản đồ véc tơ ta có: \(U_C=\sqrt{120^2+120^2}=120\sqrt{2}V\)
Cường độ dòng điện của mạch \(I=\frac{U_C}{Z_C}=\frac{120\sqrt{2}}{200}=0,6\sqrt{2}A\)
Công suất tiêu thụ cuộn dây: \(P=U.I\cos\varphi=120.0,6\sqrt{2}\cos45^0=72W\)
Ta có: \(U_L=U_C=\dfrac{U_R}{2}\)
\(\Rightarrow Z_L=Z_C=\dfrac{R}{2}=100\Omega\)
\(\Rightarrow R = 200\Omega\)
Tổng trở \(Z=R=200\Omega\) (do \(Z_L=Z_C\))
Cường độ dòng điện: \(I=\dfrac{U}{Z}=\dfrac{120}{200}=0,6A\)
Công suất: \(P=I^2.R=0,6^2.200=72W\)
Lúc sau: \(P'=\frac{U^2.R^2}{R^2_2+Z^2_C}=\frac{U^2.R^2}{R^2_2+R_1R_2}=\frac{U^2}{R_1+R_2}=P=85W\)
L giảm --> ZL giảm
A. Đúng, vì L giảm về ZL = ZC thì cộng hưởng xảy ra thì I tăng lên cực đại rồi sau đó giảm
B. Đúng, tương tự A.
C. UL max khi: \(Z_L=\frac{R^2+Z_c^2}{Z_C}=\frac{30^2+30^3}{30}=60\Omega\), như vậy điện áp hiệu dụng 2 đầu L tăng lên cực đại rồi giảm.
Tuy nhiên, nó chỉ giảm về: \(U_L=\frac{U}{\sqrt{R^2+Z_C^2}}R\) chứ không phải giảm về 0 ---> Câu này sai
D. Đúng, bạn có thể tự kiểm tra.
\(\leftrightarrow\frac{u^2_R}{\left(\frac{8}{5}\right)^2}+\frac{u^2_L}{\left(\frac{5}{2}\right)^2}=1\)
Điều kiện :
\(\begin{cases}u_R\le\frac{8}{5}\left(V\right)\\u_L\le\frac{5}{2}\left(V\right)\end{cases}\)
\(\Rightarrow U_{\text{oR}}=\frac{8}{5}\left(V\right);U_{0L}=\frac{5}{2}\left(V\right)\)
\(\Rightarrow\frac{R}{\omega L}=\frac{8}{5}.\frac{2}{5}=\frac{16}{25}\leftrightarrow L=\frac{25R}{16L}=\frac{1}{2\pi}\left(H\right)\)
Đáp án C
Khi tần số 50Hz thì uL sớm pha pi/2 so với u --> u cùng pha với i --> Cộng hưởng, công suất tiêu thụ đạt cực đại.
Do đó khi tăng f thì P giảm --> Chọn B.
Câu C sai vì I giảm --> UR giảm.
Lý luận như bạn Trần Hoàng Sơn là hợp lý