Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
nguyen van duc Cứ thay k =0;1;2;... để tìm nghiệm của từng cái rồi tìm mối liên hệ của chúng thôi
Ví dụ câu 1, \(x=k2\pi\) , thì thay k =0;1;2;...lần lượt vào ta sẽ được nghiệm màu đỏ
\(x=\pi+k2\pi\) cũng tương tự, ta được nghiệm màu xanh
=> khoảng cách giữa 2 nghiệm màu đỏ và màu xanh là \(\pi\) => gộp nghiệm sẽ là \(k\pi\) , bởi nếu giờ thay k=0, ta sẽ được nghiệm màu đỏ, k=1 sẽ được nghiệm màu xanh, k=2 lại được nghiệm màu đỏ, cứ tuần hoàn như vậy thôi.
Câu 2 cũng thế, nghiệm của chúng cách nhau 1 khoảng là \(\pi\) , vậy nên gộp nghiệm sẽ được \(\frac{\pi}{2}+k\pi\)
Câu dưới tương tự
P/s: Lần sau ko hiểu thì nhờ người khác giải thích đàng hoàng, đừng có kiểu "ko giải cụ thể ra sao hiểu" hay "bạn làm thế này thì ai mà hiểu được". Đây ko phải là đang nói chuyện bằng mồm mà bằng tay, bạn có thời gian để suy nghĩ rằng mình sẽ viết cái gì, nên làm ơn nghĩ trước khi viết ạ, lớp 11 rồi bé bỏng gì nữa. Với cả anh ấy lớn tuổi hơn bạn đấy nên đề nghị lễ phép chút.
\(cos\left(x-\dfrac{\pi}{3}\right)=sin\left(2x+\dfrac{\pi}{2}\right)\)
\(\Leftrightarrow cos\left(x-\dfrac{\pi}{3}\right)=cos2x\)
\(\Leftrightarrow\left[{}\begin{matrix}2x=x-\dfrac{\pi}{3}+k2\pi\\2x=\dfrac{\pi}{3}-x+l2\pi\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}x=-\dfrac{\pi}{3}+k2\pi\\x=\dfrac{\pi}{9}+l\dfrac{2\pi}{3}\end{matrix}\right.\)
Chỉ II đúng
4sin2x = 3 <=> \(\left[{}\begin{matrix}sinx=\frac{\sqrt{3}}{2}\\sinx=\frac{-\sqrt{3}}{2}\end{matrix}\right.\) \(\Leftrightarrow\left[{}\begin{matrix}x=\frac{\pi}{3}+k2\pi\\x=\frac{2\pi}{3}+k2\pi\end{matrix}\right.\) hoặc \(\left[{}\begin{matrix}x=\frac{-\pi}{3}+k2\pi\\x=\frac{4\pi}{3}+k2\pi\end{matrix}\right.\)
kết hợp nghiệm trên đường tròn lượng giác , ta suy ra B
B
Cái em cần là giải ạ chứ ko phải đáp án