Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a ) \(2x^4-9x^3+4x^2+21x-18\)
\(=2x^4-2x^3-7x^3+7x^2-3x^2+3x+18x-18\)
\(=2x^3\left(x-1\right)-7x^2\left(x-1\right)-3x\left(x-1\right)+18\left(x-1\right)\)
\(=\left(2x^3-7x^2-3x+18\right)\left(x-1\right)\)
\(3x^4+2x^3-8x^2-2x+5\)
\(=3x^4-3x^3+5x^3-5x^2-3x^2+3x-5x+5\)
\(=3x^3\left(x-1\right)+5x^2\left(x-1\right)-3x\left(x-1\right)-5\left(x-1\right)\)
\(=\left(3x^3+5x^2-3x-5\right)\left(x-1\right)\)
\(=\left[3x\left(x^2-1\right)+5\left(x^2-1\right)\right]\left(x-1\right)\)
\(=\left(3x+5\right)\left(x^2-1\right)\left(x-1\right)\)
\(=\left(3x+5\right)\left(x+1\right)\left(x-1\right)\left(x-1\right)=\left(3x+5\right)\left(x+1\right)\left(x-1\right)^2\)
b, \(2x^4-9x^3+4x^2+21x-18\)
\(=2x^4-2x^3-7x^3+7x^2-3x^2+3x+18x-18\)
\(=2x^3\left(x-1\right)-7x^2\left(x-1\right)-3x\left(x-1\right)+18\left(x-1\right)\)
\(=\left(2x^3-7x^2-3x+18\right)\left(x-1\right)\)
a) \(45+x^3-5x^2-9x\)
\(\Leftrightarrow\left(45-9x\right)+\left(x^3-5x^2\right)\)
\(\Leftrightarrow-9\left(x-5\right)+x^2\left(x-5\right)\)
\(\Leftrightarrow\left(x-5\right)\left(x-3\right)\left(x+3\right)\)
TK NKA !!!
đừng tin Tên đẹp thật
cậu ta lừa bn lik e rùi ko giải đâu
\(x^2-2x-4y^2-4y\)
\(=\left(x^2-4y^2\right)-\left(2x+4y\right)\)
\(=\left(x-2y\right)\left(x+2y\right)-2\left(x+2y\right)\)
\(=\left(x+2y\right)\left(x-2y-2\right)\)
\begin{array}{l} a){\left( {ab - 1} \right)^2} + {\left( {a + b} \right)^2}\\ = {a^2}{b^2} - 2ab + 1 + {a^2} + 2ab + {b^2}\\ = {a^2}{b^2} + 1 + {a^2} + {b^2}\\ = {a^2}\left( {{b^2} + 1} \right) + \left( {{b^2} + 1} \right)\\ = \left( {{a^2} + 1} \right)\left( {{b^2} + 1} \right)\\ c){x^3} - 4{x^2} + 12x - 27\\ = {x^3} - 27 + \left( { - 4{x^2} + 12x} \right)\\ = \left( {x - 3} \right)\left( {{x^2} + 3x + 9} \right) - 4x\left( {x - 3} \right)\\ = \left( {x - 3} \right)\left( {{x^2} + 3x + 9 - 4x} \right)\\ = \left( {x - 3} \right)\left( {{x^2} - x + 9} \right)\\ b){x^3} + 2{x^2} + 2x + 1\\ = {x^3} + 2{x^2} + x + x + 1\\ = x\left( {{x^2} + 2x + 1} \right) + \left( {x + 1} \right)\\ = x{\left( {x + 1} \right)^2} + \left( {x + 1} \right)\\ = \left( {x + 1} \right)\left( {x\left( {x + 1} \right) + 1} \right)\\ = \left( {x + 1} \right)\left( {{x^2} + x + 1} \right)\\ d){x^4} - 2{x^3} + 2x - 1\\ = {x^4} - 2{x^3} + {x^2} - {x^2} + 2x - 1\\ = {x^2}\left( {{x^2} - 2x + 1} \right) - \left( {{x^2} - 2x + 1} \right)\\ = \left( {{x^2} - 2x + 1} \right)\left( {{x^2} - 1} \right)\\ = {\left( {x - 1} \right)^2}\left( {x - 1} \right)\left( {x + 1} \right)\\ = {\left( {x - 1} \right)^3}\left( {x + 1} \right)\\ e){x^4} + 2{x^3} + 2{x^2} + 2x + 1\\ = {x^4} + 2{x^3} + {x^2} + {x^2} + 2x + 1\\ = {x^2}\left( {{x^2} + 2x + 1} \right) + \left( {{x^2} + 2x + 1} \right)\\ = \left( {{x^2} + 2x + 1} \right)\left( {{x^2} + 1} \right)\\ = {\left( {x + 1} \right)^2}\left( {{x^2} + 1} \right) \end{array} |
1) Ta có: 2xy - x2 - y2 + 16
= -(x2 - 2xy + y2 - 16)
= -[(x - y)2 - 16]
= -(x - y - 4)(x - y + 4)
2) x3 + 2x2y + xy2 - 9x
= x(x2 + 2xy + y2 - 9)
= x[(x + y)2 - 9]
= x(x + y - 3)(x + y + 3)
3) x4 - 2x2 = x2(x2 - 2)
1. 2xy-x2-y2+16= -(x2-2xy+y2-16) = -(x2-2xy+y2)-16 = -(x-y)2-16= (x+y)2-42= (x+y-4).(x+y+4)
2. x3+2x2y+xy2-9x= (có sai đề không vậy?)
a)\(2a^3+16=2\left(a^3+8\right)=2\left(a+2\right)\left(a^2-2a+4\right)\)
b)\(8x^3+27y^3+36x^2y+54xy^2=\left(2x\right)^3+\left(3y\right)^3+3.\left(2x\right)^2.3y+3.2x.\left(3y\right)^2\)
\(=\left(2x+3y\right)^2\)
c)\(x^4-2x^3-x^2+2x+1=\left(x^4-x^3-x^2\right)-\left(x^3-x^2-x\right)-\left(x^2-x-1\right)\)
\(=x^2\left(x^2-x-1\right)-x\left(x^2-x-1\right)-\left(x^2-x-1\right)\)
\(=\left(x^2-x-1\right)\left(x^2-x-1\right)=\left(x^2-x-1\right)^2\)
x3-2x2-9x+18
= x3-9x-2x2+18
= x(x2-9)-2(x2-9)
= (x2-9)(x-2)
= (x-3)(x+3)(x-2)
2x3-1/4
= 2(x3-1/8)
= 2[x3-(1/2)3 ]
= 2.(x-1/2)(x2+1/2x+1/4)