Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
1. C. \(16x^2\left(x-y\right)\)\(-10y\left(y-1\right)\)\(=-2\left(y-x\right)\)\(\left(8x^2+5y\right)\)
2. C. \(\left(x-y\right)\left(x-y-3\right)\)
3. D. \(\left(x-2\right)\left(x+1\right)\)
4. C. \(y\left(x-2\right)\)\(5x\left(x-3\right)\)
5. D. \(3\left(x-2y\right)\)
1. Trong các kết quả sau kết quả nào sai
A. -17x^3y-34x^2y^2+51xy^3=17xy(x^2+2xy-3y^2)
B. x(y-1) +3(y-1)= -(1-y)(x+3)
C. 16x^2(x-y)-10y(y-1)=-2(y-x)(8x^2+5y)
2. Đa thức (x-y)^2+3(y-x) được phân tích thành nhân tử là:
A. (x+y)(x-y+3)
B. (x-y)(2x-2y+3)
C. (x-y)(x-y-3)
D. Cả 3 câu đều sai
3. Kết quả phân tích đa thức x(x-2)+(x-2) thành nhân tử
A. (x-2)x
B. (x-2)^2.x
C. x(2x-4)
D. (x-2)(x+1)
4. Kết quả phân tích 5x^2(xy-2y)-15x(xy-2y) thành nhân tử
A. (xy-2y)(5x^2-15x^2)
B. y(x-2)(5x^2-15x^2)
C. y(x-2)5x(x-3)
D. (xy-2y)5x(x-3)
5. Kết quả phân tích đa thức 3x-6y thành nhân tử là
A. 3(x-6y)
B. 3(3x-y)
C. 3(3x-2y)
D. 3(x-2y)
a) ( x + 1 )( x + 2 )( x + 3 )( x + 4 ) - 15
= [ ( x + 1 )( x + 4 ) ][ ( x + 2 )( x + 3 ) ] - 15
= ( x2 + 5x + 4 )( x2 + 5x + 6 ) - 15 (*)
Đặt t = x2 + 5x + 4
(*) trở thành
t( t + 2 ) - 15
= t2 + 2t - 15
= t2 - 3t + 5t - 15
= t( t - 3 ) + 5( t - 3 )
= ( t - 3 )( t + 5 )
= ( x2 + 5x + 4 - 3 )( x2 + 5x + 4 + 5 )
= ( x2 + 5x + 1 )( x2 + 5x + 9 )
b) ( x + 2 )( x + 3 )2( x + 4 ) - 12
= [ ( x + 2 )( x + 4 ) ]( x + 3 )2 - 12
= ( x2 + 6x + 8 )( x2 + 6x + 9 ) - 12 (*)
Đặt t = x2 + 6x + 8
(*) trở thành
t( t + 1 ) - 12
= t2 + t - 12
= t2 - 3t + 4t - 12
= t( t - 3 ) + 4( t - 3 )
= ( t - 3 )( t + 4 )
= ( x2 + 6x + 8 - 3 )( x2 + 6x + 8 + 4 )
= ( x2 + 6x + 5 )( x2 + 6x + 12 )
= ( x2 + x + 5x + 5 )( x2 + 6x + 12 )
= [ x( x + 1 ) + 5( x + 1 ) ]( x2 + 6x + 12 )
= ( x + 1 )( x + 5 )( x2 + 6x + 12 )
a, Gọi\(A=\left(x+1\right)\left(x+2\right)\left(x+3\right)\left(x+4\right)-15\)
\(=\left(x^2+5x+4\right)\left(x^2+5x+6\right)-15\)
Đặt\(y=x^2+5x+4\)
\(\Rightarrow A=y\left(y+2\right)-15\)
\(=y^2+2y-15\)
\(=\left(x-3\right)\left(x+5\right)\)
Hay\(A=\left(x^2+5x+1\right)\left(x^2+5x+9\right)\)
Vậy...
b,Gọi\(B=\left(x+2\right)\left(x+3\right)^2\left(x+4\right)-12\)
\(=\left(x^2+6x+8\right)\left(x^2+6x+9\right)-12\)
Đặt\(z=x^2+6x+8\)
\(\Rightarrow B=z\left(z+1\right)-12\)
\(=z^2+z-12\)
\(=\left(z-3\right)\left(z+4\right)\)
Hay\(B=\left(x^2+6x+5\right)\left(x^2+6x+12\right)\)
Vậy...
Linz
a) Đặt \(A=x\left(x+1\right)\left(x+2\right)\left(x+3\right)+1\)
\(A=\left[x\left(x+3\right)\right]\left[\left(x+1\right)\left(x+2\right)\right]\)
\(A=\left(x^2+3x\right)\left(x^2+3x+1\right)+1\)
Đặt \(a=x^2+3x+1\)
\(\Leftrightarrow A=\left(a-1\right)\left(a+1\right)+1\)
\(\Leftrightarrow A=a^2-1^2+1\)
\(\Leftrightarrow A=a^2\)
Thay \(a=x^2+3x+1\)vào A ta có :
\(A=\left(x^2+3x+1\right)^2\)
a, Đặt x^2 + x = t
\(t^2+4t-12=\left(t-2\right)\left(t+6\right)=\left(x^2+x-2\right)\left(x^2+x+6\right)\)
b, Đặt x + 1 = t
\(t\left(t+1\right)\left(t+2\right)\left(t+3\right)-24=\left(t^2+t\right)\left(t^2+3t+2t+6\right)\)
\(\left(t^2+t\right)\left(t^2+5t+6\right)-24=t^4+5t^3+6t^2+t^3+5t^2+6t-24\)
\(=t^4+6t^3+11t^2+6t-24=\left(t^3+7t^2+18t+24\right)\left(t-1\right)\)
\(=\left(t-1\right)\left(t+4\right)\left(t^2+3t+6\right)=x\left(x+5\right)\left[\left(x+5\right)^2+3\left(x+5\right)+6\right]\)