Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
b)\(\left(x-1\right)\left(x-2\right)\left(x-3\right)\left(x-4\right)-24\)4
\(=\left[\left(x-1\right)\left(x-4\right)\right]\left[\left(x-2\right)\left(x-3\right)\right]-24\)
\(=\left(x^2-4x-x+4\right)\left(x^2-3x-2x+6\right)-24\)
\(=\left(x^2-5x+4\right)\left(x^2-5x+4+2\right)-24\)
\(\)Đặt \(x^2-5x+4\)là a,ta có
\(=a\left(a+2\right)-24\)
\(=a^2+2a-24\)
\(=a^2+6a-4a-24\)
\(=a\left(a+6\right)-4\left(a+6\right)\)
\(=\left(a+6\right)\left(a-4\right)\)
Hay \(\left(x^2-5x+4+6\right)\left(x^2-5x+4-4\right)\)
\(=\left(x^2-5x+10\right)\left(x^2-5\right)\)
Câu hỏi của Huỳnh Bảo Nguyên - Toán lớp 8 - Học toán với OnlineMath
Mk làm òi nhé !
1/(x+2)(x+3)(x+4)(x+5)-24
=(x+2)(x+5)(x+3)(x+4)
=(x+2)(x-2+7)(x+3)(x-3+7)
=[(x+2)(x-2)+7x+14][(x+3)(x-3)+7x+21]
=(x2-4+7x+14)(x2-9+7x+21)
=(x2+10+7x)(x2+12+7x)
2/(x2+x)2+4(x2+x)-12
=(x2+x)2+4(x2+x)+22-16
=(x2+x+2)2-42
=(x2+x+2+4)(x2+x+2-4)
=(x2+x+6)(x2+x-2)
3/(x2+x+1)(x2+x+2)-12
=(x2+x+1)(x2+x+-1+3)-12
=(x2+x+1)(x2+x+-1)+3(x2+x+1)-12
=(x2+x)-1+3(x2+x)+3-12
=(x2+x)(x2+x+3)-10
làm đến đây thì mk bí, bạn giúp suy nghĩ nốt nha
4/nó là nhân tử sẵn rồi mà
\(3/\)
\(\left(x^2+x+1\right)\left(x^2+x+2\right)-12\)
\(=\left(x^2+x+1\right)\left(x^2+x+1+1\right)-12\)
\(=\left(x^2+x+1\right)^2+x^2+x+1-12\)
\(=\left(x^2+x+1\right)^2+4\left(x^2+x+1\right)-3\left(x^2+x+1\right)-12\)
\(=\left(x^2+x+1\right)\left(x^2+x+1+4\right)-3\left(x^2+x+1+4\right)\)
\(=\left(x^2+x+1-3\right)\left(x^2+x+1+4\right)\)
\(=\left(x^2+x-2\right)\left(x^2+x+5\right)\)
a, Đặt x^2 + x = t
\(t^2+4t-12=\left(t-2\right)\left(t+6\right)=\left(x^2+x-2\right)\left(x^2+x+6\right)\)
b, Đặt x + 1 = t
\(t\left(t+1\right)\left(t+2\right)\left(t+3\right)-24=\left(t^2+t\right)\left(t^2+3t+2t+6\right)\)
\(\left(t^2+t\right)\left(t^2+5t+6\right)-24=t^4+5t^3+6t^2+t^3+5t^2+6t-24\)
\(=t^4+6t^3+11t^2+6t-24=\left(t^3+7t^2+18t+24\right)\left(t-1\right)\)
\(=\left(t-1\right)\left(t+4\right)\left(t^2+3t+6\right)=x\left(x+5\right)\left[\left(x+5\right)^2+3\left(x+5\right)+6\right]\)
a/\(\left(x^2-x\right)^2+4\left(x^2-x\right)-12.\)
cho \(\left(x^2-x\right)=a\)
\(\Rightarrow a^2+4a-12\)
\(=a^2+6a-2a-12\)
\(=\left(a^2+6a\right)-\left(2a+12\right)\)
\(=a\left(a+6\right)-2\left(a+6\right)\)
\(=\left(a+6\right)\left(a-2\right)\)
\(=\left(x^2-x+6\right)\left(x^2-x-2\right)\)
b/ \(\left(x+1\right)\left(x+2\right)\left(x+3\right)\left(x+4\right)-24\)
\(=\left(x+1\right)\left(x+4\right)\left(x+2\right)\left(x+3\right)-24\)
\(=\left(x^2+4x+x+4\right)\left(x^2+3x+2x+6\right)-24\)
\(=\left(x^2+5x+4\right)\left(x^2+5x+6\right)-24\)
Gọi \(x^2+5x+5=a\)
\(\Rightarrow\left(x^2+5x+4\right)\left(x^2+5x+6\right)-24=\left(a-1\right)\left(a+1\right)-24\)
\(=a^2-1-24\)
\(=a^2-25\)
\(=\left(a-5\right)\left(a+5\right)\)
\(\Rightarrow\left(x^2+5x+5-5\right)\left(x^2+5x+5+5\right)\)
\(=\left(x^2+5x\right)\left(x^2+5x+10\right)\)
\(\Rightarrow\left(x+1\right)\left(x+2\right)\left(x+3\right)\left(x+4\right)-24\)\(=\left(x^2+5x\right)\left(x^2+5x+10\right)\)
\(x^8+x^7+1\)
\(=x^8+x^7+x^6-x^6+x^5-x^5+x^4-x^4+x^3-x^3+x^2-x^2+x-xx+1\)
\(=\left(x^8-x^6+x^5-x^3+x^2\right)\)
\(+\left(x^7-x^5+x^4-x^2+x\right)\)
\(+\left(x^6-x^4+x^3-x+1\right)\)
\(=\left(x^2+x+1\right)\left(x^6-x^4+x^3-x+1\right)\)
(x2 + x)2 + 4(x2 + x) - 12
Đặt x2 + x = t, ta có:
t2 + 4t - 12
= t2 - 2t + 6t - 12
= t(t - 2) + 6(t - 2)
= (t - 2)(t + 6)
= (x2 + x - 2)(x2 + x + 6)
(x + 1)(x + 2)(x + 3)(x + 4) - 24
= (x2 + 5x + 4)(x2 + 5x + 6) - 24
Đặt x2 + 5x + 4 = t, ta có:
t(t + 2) - 24
= t2 + 2t - 24
= t2 - 4t + 6t - 24
= t(t - 4) + 6(t - 4)
= (t - 4)(t + 6)
= (x2 + 5x + 4 - 4)(x2 + 5x + 4 + 6)
= x(x + 5)(x2 + 5x + 10)
a. ( x2 + x )2 - 2 ( x2 + x ) - 15
= ( x2 + x )2 - 2 ( x2 + x ) + 1 - 16
= ( x2 + x - 1 )2 - 42
= ( x2 + x - 1 - 4 ) ( x2 + x - 1 + 4 )
= ( x2 + x - 5 ) ( x2 + x + 3 )
b. ( x2 + x + 1 ) ( x2 + x + 1 ) - 24
= ( x2 + x + 1 )2 - \(\left(2\sqrt{6}\right)^2\)
= ( x2 + x + 1 - \(2\sqrt{6}\)) ( x2 + x + 1 + \(2\sqrt{6}\))
c. ( x + 2 ) ( x + 3 ) ( x + 4 ) ( x + 5 ) - 24
= [ ( x + 2 ) ( x + 5 ) ] [ ( x + 3 ) ( x + 4 ) ] - 24
= ( x2 + 7x + 10 ) ( x2 + 7x + 12 ) - 24
Đặt t = x2 + 7x + 11, đa thức trở thành :
( t - 1 ) ( t + 1 ) - 24
= t2 - 1 - 24
= t2 - 25
= t2 - 52
= ( t - 5 ) ( t + 5 )
= ( x2 + 7x + 11 - 5 ) ( x2 + 7x + 11 + 5 )
= ( x2 + 7x + 6 ) ( x2 + 7x + 16 )