Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
1) 36x2 - a2 + 10a - 25
= 36x2 - ( a2 - 10a + 25 )
= 36x2 - ( a - 5 )2
= ( 6x - a + 5)( 6x - a - 5)
2) x2 - 2x + 1 - a2 - 2ab - b2
= (x - 1)2 - ( a + b)2
= ( x - 1 - a - b)(x-1+a-b)
1) 36x2 - a2 +10a -25
= 36x2-(a2-10a+25)
=(6x)2 - (a-5)2
= (6x - a + 5)(6x+a-5)
2) x2-2x+1-a2-2ab-b2
= (x2-2x+1)-(a2-2ab-b2)
= (x-1)2 - (a-b)2
= (x-1-a+b)(x-1+a-b)
1/ phân tích thành nhân tử ;
= C2-( a +b )2=( c-a -b ) . ( c+a +b )
a) ax + ay - bx - by = ( ax - bx ) + ( ay - by ) = x( a - b ) + y( a - b ) = ( a - b )( x + y ) < đã sửa >
b) 2x2 - 6xy + 5x - 15y = 2x( x - 3y ) + 5( x - 3y ) = ( x - 3y )( 2x + 5 )
c) ( a + b )2 - 4a2 = ( a + b )2 - ( 2a )2 = ( a + b - 2a )( a + b + 2a ) = ( b - a )( b + 3a )
d) 5a2xy - 10a3x - 15a2x2 = 5a2x( y - 2a - 3x )
e) 3( x - 1 ) + 5x( x - 1 ) = ( x - 1 )( 3 + 5x )
f) 9a2 - 4 = ( 3a )2 - 22 = ( 3a - 2 )( 3a + 2 )
g) 2x3 + 8x4 + 8x = 2x( x + 4x2 + 4 )
h) a2 - 4 + 4b - b2 = a2 - ( b2 - 4b + 4 ) = a2 - ( b - 2 )2 = ( a - b + 2 )( a + b - 2 )
i) a2 + 2ab + b2 - 16 = ( a2 + 2ab + b2 ) - 16 = ( a + b )2 - 42 = ( a + b - 4 )( a + b + 4 )
k) x2 + 5x + 4 = x2 + x + 4x + 4 = x( x + 1 ) + 4( x + 1 ) = ( x + 1 )( x + 4 )
l) 2x2 - 3x - 5 = 2x2 + 2x - 5x - 5 = 2x( x + 1 ) - 5( x + 1 ) = ( x + 1 )( 2x - 5 )
m) x3 + 6x2 + 9x = x( x2 + 6x + 9 ) = x( x + 3 )2
phân tích đa thức thành nhân tử
a/x2(x+1)-2x(x+1)+(x+1)=(x+1)(x^2-2x+1)=(x+1)(x-1)^2
b/a2+b2+2a-2b-2ab=(a^2-ab)+(b^2-ab)+2(a-b)=a(a-b)-b(a-b)+2(a-b)=(a-b)(a-b+2)
c/ 4x2-8x+3=(2x-2)^2-1=(2x-2-1)(2x-2+1)=(2x-3)(2x-1)
d/25-16x2=5^2-(4x)^2=(5-4x)(5+4x)
a) a2 + b2 + 2ab + 2a + 2b + 1
= (a2 + b2 + 2ab) + (2a + 2b) + 1
= (a + b)2 + 2(a + b) + 1
= (a + b + 1)2
b) a3 - 3a + 3b - b3
= (a3 - b3) - (3a - 3b)
= (a - b)(a2 - ab + b2) - 3(a - b)
= (a - b)(a2 - ab + b2 - 3)
c) x2 + 2x - 15
= (x2 + 2x + 1) - 16
= (x + 1)2 - 16
= (x + 1 - 5)(x + 1 + 5)
= (x - 4)(x + 6)
d) a4 + 6a2b + 9b2 - 1
= (a2 + 3b)2 - 1
= (a2 + 3b - 1)(a2 + 3b + 1)
Bài1: Phân tích các đa thức sau thành nhân tử
a)36-4x2+4xy-y2
\(=6^2-\left(4x^2-4xy+y^2\right)\)
\(=6^2-\left(2x-y\right)^2\)
\(=\left(6+2x-y\right)\left(6-2x+y\right)\)
b)2x4+3x2-5
\(=2x^4-2x^2+5x^2-5\)
\(=2x^2\left(x^2-1\right)+5\left(x^2-1\right)\)
\(=\left(2x^2+5\right)\left(x^2-1\right)\)
\(=\left(2x^2+5\right)\left(x-1\right)\left(x+1\right)\)
B1:a)\(36-4x^2+4xy-y^2=36-\left(4x^2-4xy+y^2\right)=6^2-\left(2x-y\right)^2\)
\(=\left(6-2x+y\right)\left(6+2x-y\right)\)
c)\(a^3-ab^2+a^2+b^2-2ab=a\left(a^2-b^2\right)+\left(a-b\right)^2\)\(=a\left(a-b\right)\left(a+b\right)+\left(a-b\right)^2=\left(a-b\right)\left(a^2+ab+a-b\right)\)
d)\(x^2-\left(a^2+b^2\right)x+a^2b^2=x^2-a^2x-b^2x+a^2b^2\)\(=x\left(x-a^2\right)-b^2\left(x-a^2\right)=\left(x-a^2\right)\left(x-b^2\right)\)
e)\(x\left(x-y\right)+x^2-y^2=x\left(x-y\right)+\left(x-y\right)\left(x+y\right)\)\(=\left(x-y\right)\left(x+x+y\right)=\left(x-y\right)\left(2x+y\right)\)
\(36x^2-9y^2-12x-6y\)
\(=\left(36x^2-12x+1\right)-\left(9y^2+6y+1\right)\)
\(=\left(6x-1\right)^2-\left(9y+1\right)\)
\(=\left(6x+9y\right)\left(6x-3y-2\right)\)
\(=3\left(2x+3y\right)\left(6x-3y-2\right)\)
a) x^4 - x^3 - x + 1
= x^3 ( x - 1 ) - ( x- 1 )
= ( x^3 - 1 )(x - 1)
= ( x- 1 )^2 (x^2 + x + 1 )
a)x4-x3-x+1
=x3(x-1)-(x-1)
=(x-1)(x3-1)
=(x-1)(x-1)(x2+x+1)
=(x-1)2(x2+x+1)
b)5x2-4x+20xy-8y
(sai đề)
a,\(2axy-4a^2xy^2+6a^3x^2\)
\(=2ax\left(y-2ay^2+3a^2x\right)\)
b,\(5a^2xy-10a^3x-15ay\)
\(=5a\left(axy-2ax-3y\right)\)
Tự lm tiếp, tất cả đều dùng bằng phương phép đặt nhân tử chung nhé
23) \(2axy-4a^2xy^2+6a^3x^2\)
\(=2ax\left(y-2ay^2+3a^2x\right)\)
24) \(5a^2xy-10a^3x-15ay\)
\(=5a\left(axy-2a^2x-3y\right)\)
25) \(mxy-m^2x+my\)
\(=m\left(xy-mx+y\right)\)
26) \(2mx-4m^2xy+6mx\)
\(=2mx\left(1-2my+3\right)\)
\(=4mx\left(2-my\right)\)