Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) \(x^4+324=\left(x^2-6x+18\right)\left(x^2+6x+18\right)\)
c) \(x^{13}+x^5+1=\left(x^2+x+1\right)\left(x^{11}-x^{10}+x^8-x^7+x^5-x^4+x^3-x+1\right)\)
d) \(x^{11}+x+1=\left(x^2+x+1\right)\left(x^9-x^8+x^6-x^5+x^3-x^2+1\right)\)
e) \(x^8+3x^4+4=\left(x^4+x^2+2\right)\left(x^4-x^2+2\right)\)
x^3y^4 + 64 = (x^(27y^4)+4)(x^(54y^4)-4x^(27y^4)+16)
4x^4y^4 + 1 = (2x^(128y^4)-2x^(64y^4)+1)(2x^(128y^4)+2x^(64y^4)+1)
32x^4 + 11 = ko biết
x^4 + 4y^4 = (2y^2-2xy+x^2)(2y^2+2xy+x^2)
x^7 + x^2 + 11 = ko biết
x^8 + x + 1 = (x^2+x+1)(x^6-x^5+x^3-x^2+1)
x^8 + x^7 + 11 = ko biết
\(x^{11}+x^7+1\)
\(=\left(x^{11}-x^2\right)+\left(x^7-x\right)+\left(x^2+x+1\right)\)
\(=x^2\left(x^9-1\right)+x\left(x^6-1\right)+\left(x^2+x+1\right)\)
\(=x^2\left(x^3-1\right)\left(x^6+x^3+1\right)+x\left(x^3-1\right)\left(x^3+1\right)+\left(x^2+x+1\right)\)
\(=x^2\left(x-1\right)\left(x^2+x+1\right)\left(x^6+x^3+1\right)+x\left(x-1\right)\left(x^2+x+1\right)\left(x^3+1\right)+\left(x^2+x+1\right)\)
\(=\left(x^2+x+1\right)\left[x^2\left(x-1\right)\left(x^6+x^3+1\right)+x\left(x-1\right)\left(x^3+1\right)+1\right]\)
\(=\left(x^2+x+1\right)\left(x^9+x^6+x^3-x^8-x^5-x^2+x^5+x^2-x^4-x+1\right)\)
\(=\left(x^2+x+1\right)\left(x^9-x^8+x^6-x^4+x^3-x+1\right)\)
\(x^7+x^2+1\)
\(=\left(x^7-x\right)+\left(x^2+x+1\right)\)
\(=x\left(x^6-1\right)+\left(x^2+x+1\right)\)
\(=x\left(x^3-1\right)\left(x^3+1\right)+\left(x^2+x+1\right)\)
\(=\left(x-1\right)\left(x^2+x+1\right)\left(x^4+x\right)+\left(x^2+x+1\right)\)
\(=\left(x^2+x+1\right)\left(x^5+x^2-x^4-x+1\right)\)
\(x^8+3x^4+4\)
\(=\left(x^8-x^6+2x^4\right)+\left(x^6-x^4+2x^2\right)+\left(2x^4-2x^2+4\right)\)
\(=x^4\left(x^4-x^2+2\right)+x^2\left(x^4-x^2+2\right)+2\left(x^4-x^2+2\right)\)
\(=\left(x^4+x^2+2\right)\left(x^4-x^2+2\right)\)
\(4x^4+4x^3+5x^2+2x+1\)
\(=\left(4x^4+2x^3+2x^2\right)+\left(2x^3+x^2+x\right)+\left(2x^2+x+1\right)\)
\(=2x^2\left(2x^2+x+1\right)+x\left(2x^2+x+1\right)+\left(2x^2+x+1\right)\)
\(=\left(2x^2+x+1\right)^2\)
a) x2 - 4y2
= x2 - ( 2y )2
= ( x - 2y )( x + 2y )
b) x2 + x - 12
= x2 - 3x + 4x - 12
= x( x - 3 ) + 4( x - 3 )
= ( x - 3 )( x + 4 )
c) x2 + 2xy + y2 - 11
= ( x2 + 2xy + y2 ) - 11
= ( x + y )2 - ( √11 )2
= ( x + y - √11 )( x + y + √11 )
d) x4 + 1
= ( x4 + 2x2 + 1 ) - 2x2
= ( x2 + 1 )2 - ( √2x )2
= ( x2 - √2x + 1 )( x2 + √2x + 1 )
a) \(x^2-4y^2\)
\(=x^2-\left(2y\right)^2\)
\(=\left(x-2y\right).\left(x+2y\right)\)
b) \(x^2+x-12\)
\(=x^2+4x-3x-12\)
\(=\left(x^2+4x\right)-\left(3x+12\right)\)
\(=x.\left(x+4\right)-3.\left(x+4\right)\)
\(=\left(x+4\right).\left(x-3\right)\)
c) \(x^2+2xy+y^2-11\)
\(=\left(x^2+2xy+y^2\right)-11\)
\(=\left(x+y\right)^2-11\)
\(=\left(x+y\right)^2-\left(\sqrt{11}\right)^2\)
\(=\left(x+y-\sqrt{11}\right).\left(x+y+\sqrt{11}\right)\)