K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

25 tháng 6 2016

bạn áp dụng các hằng đẳng thức là Ok:

a) \(-4x^2+12xy-9y^2+25=-\left(2x\right)^2+2.2x.3y-\left(3y\right)^2+25\)

\(-\left(2x-3y\right)^2+25=\left(5-2x+3y\right)\left(5+2x-3y\right)\)

b) \(x^3-3x^2+3x-1=\left(x^3-1\right)-\left(3x^2-3x\right)=\left(x-1\right)\left(x^2+x+1^2\right)-3x\left(x-1\right)\)

\(\left(x-1\right)\left(x^2+x+1^2-3x\right)=\left(x-1\right)\left(x^2-2x+1\right)=\left(x-1\right)\left(x-1\right)^2=\left(x-1\right)^3\)

c) \(a^6-a^4+2a^3+2a^2=a^2\left(a^4-a^2+2a+2\right)=a^2\left[a^2\left(a^2-1\right)+2\left(a+1\right)\right]\)

\(a^2\left[a^2\left(a+1\right)\left(a-1\right)+2\left(a+1\right)\right]=a^2\left(a+1\right)\left(a^3+a^2+2\right)\)

25 tháng 6 2016

Thanks bạn hiền hiuhiu

1 tháng 1 2018

a)\(\dfrac{27-x^3}{5x+5}:\dfrac{2x-6}{3x+3}\)

\(=\dfrac{\left(3-x\right)\left(9+3x+x^2\right)}{5\left(x+1\right)}:\dfrac{2\left(x-3\right)}{3\left(x+1\right)}\)

\(=\dfrac{\left(3-x\right)\left(9+3x+x^2\right)3\left(x+1\right)}{5\left(x+1\right)2\left(x-3\right)}\)

\(=\dfrac{-\left(x-3\right)\left(9+3x+x^2\right)3\left(x+1\right)}{5\left(x+1\right)2\left(x-3\right)}\)

\(=\dfrac{-\left(9+3x+x^2\right)3}{10}\)

b)\(4x^2-16:\dfrac{3x+6}{7x-2}\)

\(=4\left(x^2-4\right):\dfrac{3\left(x+2\right)}{7x-2}\)

\(=4\left(x-2\right)\left(x+2\right)\cdot\dfrac{7x-2}{3\left(x+2\right)}\)

\(=\dfrac{4\left(x-2\right)\left(x+2\right)\left(7x-2\right)}{3\left(x+2\right)}\)

\(=\dfrac{4\left(x-2\right)\left(7x-2\right)}{3}\)

c)\(\dfrac{3x^3+3}{x-1}:x^2-x+1\)

\(=\dfrac{3\left(x^3+1\right)}{x-1}:x^2-x+1\)

\(=\dfrac{3\left(x+1\right)\left(x^2-x+1\right)}{x-1}\cdot\dfrac{1}{x^2-x+1}\)

\(=\dfrac{3\left(x+1\right)}{x-1}\)

d)\(\dfrac{4x+6y}{x-1}:\dfrac{4x^2+12xy+9y^2}{1-x^3}\)

\(=\dfrac{2\left(2x+3y\right)}{x-1}\cdot\dfrac{\left(1-x\right)\left(1+x+x^2\right)}{\left(2x+3y\right)^2}\)

\(=\dfrac{2\left(2x+3y\right)}{x-1}\cdot\dfrac{-\left(x-1\right)\left(1+x+x^2\right)}{\left(2x+3y\right)^2}\)

\(=\dfrac{-2\left(1+x+x^2\right)}{2x+3y}\)

ngoamthanghoa

1 tháng 1 2018

a) \(\dfrac{27-x^3}{5x+5}:\dfrac{2x-6}{3x+3}\)

\(=\dfrac{27-x^3}{5x+5}.\dfrac{3x+3}{2x-6}\)

\(=\dfrac{\left(3-x\right)\left(9+3x+x^2\right)}{5\left(x+1\right)}.\dfrac{3\left(x+1\right)}{2\left(x-3\right)}\)

\(=-\dfrac{3\left(x-3\right)\left(x^2+3x+9\right)\left(x+1\right)}{10\left(x+1\right)\left(x-3\right)}\)

\(=-\dfrac{3\left(x^2+3x+9\right)}{10}\)

b) \(4x^2-16:\dfrac{3x+6}{7x-2}\)

\(=4x^2-16.\dfrac{7x-2}{3x+6}\)

\(=\dfrac{4\left(x^2-4\right)\left(7x-2\right)}{3\left(x+2\right)}\)

\(=\dfrac{4\left(x-2\right)\left(x+2\right)\left(7x-2\right)}{3\left(x+2\right)}\)

\(=\dfrac{4\left(x-2\right)\left(7x-2\right)}{3}\)

c) \(\dfrac{3x^3+3}{x-1}:x^2-x+1\)

\(=\dfrac{3x^3+3}{x-1}.\dfrac{1}{x^2-x+1}\)

\(=\dfrac{3\left(x^3+1\right)}{\left(x-1\right)\left(x^2-x+1\right)}\)

\(=\dfrac{3\left(x+1\right)\left(x^2-x+1\right)}{\left(x-1\right)\left(x^2-x+1\right)}\)

\(=\dfrac{3\left(x+1\right)}{x-1}\)

d) \(\dfrac{4x+6y}{x-1}:\dfrac{4x^2+12xy+9y^2}{1-x^3}\)

\(=\dfrac{4x+6y}{x-1}.\dfrac{1-x^3}{4x^2+12xy+9y^2}\)

\(=\dfrac{2\left(2x+3y\right)\left(1-x\right)\left(1+x+x^2\right)}{\left(x-1\right)\left(2x+3y\right)^2}\)

\(=-\dfrac{2\left(2x+3y\right)\left(x-1\right)\left(x^2+x+1\right)}{\left(x-1\right)\left(2x+3y\right)^2}\)

\(=-\dfrac{2\left(x^2+x+1\right)}{2x+3y}\)

5 tháng 9 2020

a) ( x2 - 25 )2 - ( x - 5 )2

= [ ( x - 5 )( x + 5 ) ]2 - ( x - 5 )2

= [ ( x - 5 )( x + 5 ) - ( x - 5 ) ][ ( x - 5 )( x + 5 ) + ( x - 5 ) ]

= ( x - 5 )( x + 5 - 1 )( x - 5 )( x + 5 + 1 )

= ( x - 5 )2( x + 4 )( x + 6 )

b) ( 4x2 - 25 )2 - 9( 2x - 5 )2

= ( 4x2 - 25 )2 - 32( 2x - 5 )2

= ( 4x2 - 25 )2 - ( 6x - 15 )2 

= [ ( 4x2 - 25 ) - ( 6x - 15 ) ][ ( 4x2 - 25 ) + ( 6x - 15 ) ]

= ( 4x2 - 25 - 6x + 15 )( 4x2 - 25 + 6x - 15 )

= ( 4x2 - 6x - 10 )( 4x2 + 6x - 40 )

= ( 4x2 + 4x - 10x - 10 )( 4x2 + 16x - 10x - 40 )

= [ 4x( x + 1 ) - 10( x + 1 ) ][ 4x( x + 4 ) - 10( x + 4 ) ]

= ( x + 1 )( 4x - 10 )( x + 4 )( 4x - 10 )

= ( 4x - 10 )2( x + 1 )( x + 4 )

c) 4( 2x - 3 )2 - 9( 4x2 - 9 )2

= 22( 2x - 3 )2 - 32( 4x2 - 9 )2

= ( 4x - 6 )2 - ( 12x2 - 27 )2

= [ ( 4x - 6 ) - ( 12x2 - 27 ) ][ ( 4x - 6 ) + ( 12x2 - 27 ) ]

= ( 4x - 6 - 12x2 + 27 )( 4x - 6 + 12x2 - 27 )

= ( -12x2 + 4x + 21 )( 12x2 + 4x - 33 )

= ( -12x2 + 18x - 14x + 21 )( 12x2 - 18x + 22x - 33 )

= [ -12x( x - 3/2 ) - 14( x - 3/2 ) ][ 12x( x - 3/2 ) + 22( x - 3/2 ) ]

= ( x - 3/2 )( -12x - 14 )( x - 3/2 )( 12x + 22 )

= ( x - 3/2 )2( -12x - 14 )( 12x + 22 )

d) a6 - a4 + 2a3 + 2a2

= a2( a4 - a2 + 2a + 2 )

= a2( a4 - 2a3 + 2a3 + 2a2 - 4a2 + a2 + 4a - 2a + 2 )

= a2[ ( a4 - 2a3 + 2a2 ) + ( 2a3 - 4a2 + 4a ) + ( a2 - 2a + 2 ) ]

= a2[ a2( a2 - 2a + 2 ) + 2a( a2 - 2a + 2 ) + 1( a2 - 2a + 2 ) ]

= a2( a2 + 2a + 1 )( a2 - 2a + 2 )

= a2( a + 1 )2( a2 - 2a + 2 )

e) ( 3x2 + 3x + 2 )2 - ( 3x2 + 3x - 2 )2

= [ ( 3x2 + 3x + 2 ) - ( 3x2 + 3x - 2 ) ][ ( 3x2 + 3x + 2 ) + ( 3x2 + 3x - 2 ) ]

= ( 3x2 + 3x + 2 - 3x2 - 3x + 2 )( 3x2 + 3x + 2 + 3x2 + 3x - 2 )

= 4( 6x2 + 6x ) 

= 4.6x( x + 1 )

= 24( x + 1 )

5 tháng 9 2020

e) là 24x( x + 1 ) nhé mình đánh thiếu 

7 tháng 8 2018

c)\(x^2+x+\dfrac{1}{4}=\left(x+\dfrac{1}{2}\right)^2\)

d)\(\dfrac{a^2}{4}-2a+4=\left(\dfrac{a}{2}-2\right)^2\)

e) \(4y^2-9x^2=\left(2y-3x\right)\left(2y+3x\right)\)

f)\(9y^2-\dfrac{1}{4}=\left(3y-\dfrac{1}{2}\right)\left(3y+\dfrac{1}{2}\right)\)

g)\(8x^3+8a^3=\left(2x+2a\right)\left(4x^2-4xa+4a^2\right)\)

3 tháng 7 2017

bn chép lại đề nhé

a/ \(=\left(x+y\right)^2-4x^2y^2=\left(x+y+2xy\right)\left(x+y-2xy\right)\)

b/ \(=\left(2bc+b^2+c^2-a^2\right)\left(2bc-b^2-c^2+a^2\right)\)

\(=\left[\left(b+c\right)^2-a^2\right]\left[-\left(b+c\right)^2+a^2\right]\)

\(=\left(b+c-a\right)\left(b+c+a\right)^2\left(a-b-c\right)\)

c/ \(=2a^2+2b^2-2c^2+4ab=2\left[\left(a^2+b^2+2ab\right)-c^2\right]\)

\(=2\left(a+b-c\right)\left(a+b+c\right)\)

d/ \(=\left(4x^2-25\right)^2-9\left(4x^2-20x+25\right)\)

\(=\left(4x^2-25\right)^2-9\left(4x^2+25\right)+180x\)

tới đây bạn đặt a= 4x^2 -25 rồi làm típ nha, mình lười quá >< 

e/ tương tự câu d nha bạn

f/ \(=a^4\left(a^2-1\right)+2a^2\left(a+1\right)\)

\(=a^4\left(a-1\right)\left(a+1\right)+2a^2\left(a+1\right)\)

\(=a^2\left(a+1\right)\left(a^2+2\right)\)

g/   đặt \(a=3x^2+3x+2\) khi đó biểu thức trở thành

\(a^2-\left(a+4\right)^2=a^2-a^2-8a-16\)

\(=-8a-16=-8\left(3x^2+3x+2-8\right)=-8\left(3x^2+3x-6\right)\)

\(=-24\left(x^2+x-2\right)=-24\left(x-1\right)\left(x+2\right)\)

xong rùi nha bn. Chúc bn hc tốt (xin lỗi tại có mấy câu mình lười nha)

3 tháng 9 2018

\(x^2-4x^2y^2+y^2+2xy\)

\(=\left(x^2+2xy+y^2\right)-4x^2y^2\)

\(=\left(x+y\right)^2-4x^2y^2\)

\(=\left(x-2xy+y\right)\left(x+2xy+y\right)\)

10 tháng 1 2018

1 ) \(\left(x-4\right)^2-25=0\)

\(\Leftrightarrow\left(x-4-5\right)\left(x-4+5\right)=0\)

\(\Leftrightarrow\left(x-9\right)\left(x+1\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}x=9\\x=-1\end{matrix}\right.\)

2 ) \(\left(x-3\right)^2-\left(x-1\right)^2=0\)

\(\Leftrightarrow\left(x-3+x-1\right)\left(x-3-x+1\right)=0\)

\(\Leftrightarrow-2\left(2x-4\right)=0\)

\(\Leftrightarrow x=2.\)

3 ) \(\left(x^2-4\right)\left(2x+3\right)=\left(x^2-4\right)\left(x-1\right)\)

\(\Leftrightarrow\left(x^2-4\right)\left(2x+3-x+1\right)=0\)

\(\Leftrightarrow\left(x-2\right)\left(x+2\right)\left(x+4\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}x=2\\x=-2\\x=-4\end{matrix}\right.\)

4 ) \(\left(x^2-1\right)-\left(x+1\right)\left(2-3x\right)=0\)

\(\Leftrightarrow\left(x+1\right)\left(x-1-2+3x\right)=0\)

\(\Leftrightarrow\left(x+1\right)\left(4x-3\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}x=-1\\x=\dfrac{3}{4}\end{matrix}\right.\)

5 ) \(x^3+x^2+x+1=0\)

\(\Leftrightarrow\left(x^2+1\right)\left(x+1\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}x^2=-1\left(loại\right)\\x=-1.\end{matrix}\right.\)

6 ) \(x^3+x^2-x-1=0\)

\(\Leftrightarrow\left(x-1\right)\left(x+1\right)\left(x+1\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}x=1\\x=-1\end{matrix}\right.\)

7 ) \(2x^3+3x^2+6x+5=0\)

\(\Leftrightarrow2x^3+2x^2+x^2+x+5x+5=0\)

\(\Leftrightarrow2x^2\left(x+1\right)+x\left(x+1\right)+5\left(x+1\right)=0\)

\(\Leftrightarrow\left(2x^2+x+5\right)\left(x+1\right)=0\)

\(\Leftrightarrow x=-1.\)

8 ) \(x^4-4x^3-19x^2+106x-120=0\)

\(\Leftrightarrow x^4-4x^3-19x^2+76x+30x-120=0\)

\(\Leftrightarrow x^3\left(x-4\right)-19x\left(x-4\right)+30\left(x-4\right)=0\)

\(\Leftrightarrow\left(x^3-19x+30\right)\left(x-4\right)=0\)

\(\Leftrightarrow\left(x^3-8-19x+38\right)\left(x-4\right)\)

\(\Leftrightarrow\left(x-2\right)\left(x^2+4x+23\right)\left(x-4\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}x=2\\x=4\end{matrix}\right.\)

9 ) \(\left(x^2-3x+2\right)\left(x^2+15x+56\right)+8=0\)

\(\Leftrightarrow\left(x-2\right)\left(x-1\right)\left(x+7\right)\left(x+8\right)+8=0\)

\(\Leftrightarrow\left(x^2+7x-x-7\right)\left(x^2+8x-2x-16\right)+8=0\)

\(\Leftrightarrow\left(x^2+6x-7\right)\left(x^2+6x-16\right)+8=0\)

Đặt \(x^2+6x-7=t\)

\(\Leftrightarrow t\left(t-9\right)+8=0\)

\(\Leftrightarrow t^2-9t+8=0\)

\(\Leftrightarrow\left[{}\begin{matrix}t=8\\t=1\end{matrix}\right.\)

Khi t = 8 \(\Leftrightarrow x^2+6x-7=8\Leftrightarrow x^2+6x-15\Leftrightarrow\left[{}\begin{matrix}x=-3+2\sqrt{6}\\x=-3-2\sqrt{6}\end{matrix}\right.\)

Khi t = 1 \(\Leftrightarrow x^2+6x-7=1\Leftrightarrow x^2+6x-8=0\Leftrightarrow\left[{}\begin{matrix}x=-3+\sqrt{17}\\x=-3-\sqrt{17}\end{matrix}\right.\)

Vậy ........

I. Trắc nghiệm (3 điểm): Hãy khoanh tròn vào trước các đáp án đúng.Câu 1: Kết quả của phép nhân: 3x2y.(3xy – x2 + y) là:A) 3x3y2 – 3x4y – 3x2y2 B) 9x3y2 – 3x4y + 3x2y2C) 9x2y – 3x5 + 3x4 D) x – 3y + 3x2 Câu 2: Kết quả của phép nhân (x – 2).(x + 2) là: A) x2 – 4 B) x2 + 4 C) x2 – 2 D) 4 - x2 ...
Đọc tiếp

I. Trắc nghiệm (3 điểm): Hãy khoanh tròn vào trước các đáp án đúng.

Câu 1: Kết quả của phép nhân: 3x2y.(3xy – x2 + y) là:

A) 3x3y2 – 3x4y – 3x2y2 B) 9x3y2 – 3x4y + 3x2y2

C) 9x2y – 3x5 + 3x4 D) x – 3y + 3x2

Câu 2: Kết quả của phép nhân (x – 2).(x + 2) là:

A) x2 – 4 B) x2 + 4 C) x2 – 2 D) 4 - x2

Câu 3: Giá trị của biểu thức x + 2x + 1 tại x = -1 là:

A) 4 B) -4 C) 0 D) 2

Câu 4: Kết quả khai triển của hằng đẳng thức (x + y)3 là:

A) x2 + 2xy + y2 B) x3 + 3x2y + 3xy2 + y3

C) (x + y).(x2 – xy + y2) D) x3 - 3x2y + 3xy2 - y3

Câu 5: Kết quả của phép chia (20x4y – 25x2y2 – 5x2y) : 5x2y là:

A) 4x2 – 5y + xy B) 4x2 – 5y – 1

C) 4x6y2 – 5x4y3 – x4y2 D) 4x2 + 5y - xy

Câu 6: Đẳng thức nào sau đây là Sai:

A) (x - y)3 = x3 - 3x2y + 3xy2 - y3 B) x3 – y3 = (x - y)(x2 - xy + y2) C) (x - y)2 = x2 - 2xy + y2 D) (x - 1)(x + 1) = x2 - 1

II. Tự luận (7 điểm)

Câu 1 ( 1 điểm): Rút gọn biểu thức P = (x - y)2 + (x + y)2 – 2.(x + y)(x – y) – 4x2

Câu 2 (3 điểm): Phân tích các đa thức sau thành nhân tử:

a/ x3 – x2y + 3x – 3y

b/ x3 – 2x2 – 4xy2 + x

c/ (x + 2)(x+3)(x+4)(x+5) – 8

Câu 3 (2 điểm): Làm tính chia:(x4 – x3 – 3x2 + x + 2) : (x2 – 1)

Câu 4 (1 điểm): Cho x, y là 2 số khác nhau thoả mãn x2 – y = y2 – x. Tính giá trị của biểu thức A = x3 + y3 + 3xy(x2 + y2) + 6x2y2(x + y).

help mekhocroi

2
23 tháng 10 2016

Đại số lớp 8

Vậy (x^4 - x^3 - 3x^2 + x + 2) = (x^2 - x - 1)(x^2 - 1) + 1

23 tháng 10 2016

Đại số lớp 8

Đại số lớp 8

\(P=\left(x-y\right)^2+\left(x+y\right)^2-2\left(x+y\right)\left(x-y\right)-4x^2=\left(x-y-x-y\right)^2-\left(2x\right)^2=\left(-2y\right)^2-\left(2x\right)^2\)

\(=\left(2y-2x\right)\left(2y+2x\right)=2\left(y-x\right)2\left(y+x\right)=4\left(x+y\right)\left(y-x\right)\)

\(x^3-x^2y+3x-3y=x^2\left(x-y\right)+3\left(x-y\right)=\left(x-y\right)\left(x^2+3\right)\)

\(x^3-2x^2-4xy^2+x=x\left(x^2-2x+1-4y^2\right)=x\left[\left(x-1\right)^2-\left(2y\right)^2\right]=x\left(x+2y-1\right)\left(x-2y-1\right)\)

\(\left(x+2\right)\left(x+3\right)\left(x+4\right)\left(x+5\right)-8=\left(x^2+7x+10\right)\left(x^2+7x+12\right)-8\)

Đặt \(x^2+7x+10=t\), ta có:

\(t\left(t+2\right)-8=t^2+2t-8=t^2-2t+4t-8=t\left(t-2\right)+4\left(t-2\right)=\left(t-2\right)\left(t+4\right)\)

\(=\left(x^2+7x+10+4\right)\left(x^2+7x+10-2\right)=\left(x^2+7x+14\right)\left(x^2+7x-8\right)\)

28 tháng 7 2016

1.  x^3-19x-30 
=x^3-25x+6x-30 
=x(x^2-25)+6(x-5) 
=x(x+5)(x-5)+6(x-5) 
=(x-5)(x^2+5x+6) 
=(x-5)(x^2+2x+3x+6) 
=(x-5)[x(x+2)+3(x+2)] 
=(x-5)(x+2)(x+3)

28 tháng 7 2016

 2.

a + b + c = 0 
<=> (a + b + c)² = 0 
<=> a² + b² + c² + 2(ab + bc + ca) = 0 
<=> a² + b² + c² = -2(ab + bc + ca) ------------(1) 

CẦn chứng minh: 

2(a^4 + b^4 + c^4) = (a² + b² + c²)² 

<=> 2(a^4 + b^4 + c^4) = a^4 + b^4 + c^4 + 2(a²b² + b²c² + c²a²) 

<=> a^4 + b^4 + c^4 = 2(a²b² + b²c² + c²a²) 

<=> (a² + b² + c²)² = 4(a²b² + b²c² + c²a²) ---(cộng 2 vế cho 2(a²b² + b²c² + c²a²) ) 

<=> [-2(ab + bc + ca)]² = 4(a²b² + b²c² + c²a²) ----(do (1)) 

<=> 4.(a²b² + b²c² + c²a²) + 8.(ab²c + bc²a + a²bc) = 4(a²b² + b²c² + c²a²) 

<=> 8.(ab²c + bc²a + a²bc) = 0 

<=> 8abc.(a + b + c) = 0 

<=> 0 = 0 (đúng), Vì a + b + c = 0 

=> Đpcm