K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

28 tháng 7 2016

1.  x^3-19x-30 
=x^3-25x+6x-30 
=x(x^2-25)+6(x-5) 
=x(x+5)(x-5)+6(x-5) 
=(x-5)(x^2+5x+6) 
=(x-5)(x^2+2x+3x+6) 
=(x-5)[x(x+2)+3(x+2)] 
=(x-5)(x+2)(x+3)

28 tháng 7 2016

 2.

a + b + c = 0 
<=> (a + b + c)² = 0 
<=> a² + b² + c² + 2(ab + bc + ca) = 0 
<=> a² + b² + c² = -2(ab + bc + ca) ------------(1) 

CẦn chứng minh: 

2(a^4 + b^4 + c^4) = (a² + b² + c²)² 

<=> 2(a^4 + b^4 + c^4) = a^4 + b^4 + c^4 + 2(a²b² + b²c² + c²a²) 

<=> a^4 + b^4 + c^4 = 2(a²b² + b²c² + c²a²) 

<=> (a² + b² + c²)² = 4(a²b² + b²c² + c²a²) ---(cộng 2 vế cho 2(a²b² + b²c² + c²a²) ) 

<=> [-2(ab + bc + ca)]² = 4(a²b² + b²c² + c²a²) ----(do (1)) 

<=> 4.(a²b² + b²c² + c²a²) + 8.(ab²c + bc²a + a²bc) = 4(a²b² + b²c² + c²a²) 

<=> 8.(ab²c + bc²a + a²bc) = 0 

<=> 8abc.(a + b + c) = 0 

<=> 0 = 0 (đúng), Vì a + b + c = 0 

=> Đpcm

13 tháng 7 2015

1a/ x3+x2+x+1=0

x2(x+1).(x+1)=0

=>           x2(x+1)=0                     x =1

hoặc                               =>[

              x+1=0                        x=-1

 

b/(x+2)2=x+2

x2+2.x.2+2=x+2

x+x+4x+4=x+2

6x+4=x+2

....

c/(x+1)(6x2+2x)+(x-1)(6x2+2x)=0

x2-12 + (6x2+2x)2=0

=>               x2-1 = 0                   x=1

hoặc                               => [

              (6x2+2x)2=0                 x= 0

 

 

 

 

4 tháng 8 2015

h) (x+1)(x+4)(x+2)(x+3) - 24

= (x2+4x+x+4)(x2+3x+2x+6)-24

=(x2+5x+5-1)(x2+5x+5+1)-24

=(x2+5x+5)-12 -24

=(x2+5x+5)-25

=(x2+5x+5)-52

=(x2+5x+5-5)(x2+5x+5+5)

=(x2+5x)(x2+5x+10)

 

i) 4(x2+5x+10x+50)(x2+6x+12x+72)-3x2

=4[x(x+5)+10(x+5)].[x(x+6)+12(x+6)]- 3x2

=4(x+10)(x+5)(x+12)(x+6)-3x2

=4(x+10)(x+6)(x+12)(x+5)-3x2

=4(x2+6x+10x+60)(x2+5x+12x+60)-3x2

=4(x2+16x+60)(x2+17x+60)-3x2

Đặt (x2+16x+60) = a

Ta có: 4a(a+x)-3x2

=4a2+4ax -3x2

=(2a)2 + 2.2a.x +x2 -4x2

= [ (2a) +x]2 - (2x)2
= [ (2a) +x -2x].[(2a) + x +2x)]

=[ (2a) -x].[(2a) + 3x)]
sau đó ta thế a = (x2+16x+60) rồi rút gọn là xong ^^

3 tháng 8 2015

Đã khó lại còn dài 

3 tháng 7 2018

a/ 9(x-y)2 - 4(x+y)2

= [3(x-y)]2 - [2(x+y)]2

= (3x-3y-2x-2y)(3x-3y+2x+2y)

= (x-5y)(5x-y)

b/ x3 + 1 - x2 - x

= (x + 1)(x2 + x + 1) - x(x+1)

= (x+1)(x2 + x + 1 - x)

= (x+1)(x2 + 1)

c/ x2 - 2x - 4y2 - 4y

= (x2 - 4y2) - (2x + 4y)

= (x-2y)(x+2y) - 2(x + 2y)

= (x+2y)(x-2y -2)

5 tháng 4 2020

a, Ta có : BĐT \(a^2+b^2\ge2ab\) = BĐT cauchuy .

-> Áp dụng BĐT cauchuy ta được :

\(\left\{{}\begin{matrix}a^4+b^4\ge2\sqrt{a^4b^4}=2a^2b^2\\c^4+d^4\ge2\sqrt{c^4d^4}=2c^2d^2\end{matrix}\right.\)

- Cộng 2 bpt lại ta được :

\(a^4+b^4+c^4+d^4\ge2a^2b^2+2c^2d^2=2\left(\left(ab\right)^2+\left(cd\right)^2\right)\)

- Mà \(\left(ab\right)^2+\left(cd\right)^2\ge2abcd\)

=> \(a^4+b^4+c^4+d^4\ge2.2abcd=4abcd\)

b, CMTT câu 1 .

- Áp dụng BĐT cauchuy ta được :

\(\left\{{}\begin{matrix}a^2+1\ge2a\\b^2+1\ge2b\\c^2+1\ge2c\end{matrix}\right.\)

- Nhân 3 bpt trên lại ta được :

\(\left(a^2+1\right)\left(b^2+1\right)\left(c^2+1\right)\ge2.2.2abc=8abc\)

a) \(x^2-x-2=x^2+x-2x-2=x\left(x+1\right)-2\left(x+1\right)\)

\(=\left(x+1\right)\left(x-2\right)\)

19 tháng 6 2016

a) \(x^2-x-2=x^2-2x+x-2=x\left(x-2\right)+\left(x-2\right)=\left(x-2\right)\left(x+1\right)\)

b) \(x^3-19x-30==x^3+2x^2-2x^2-4x-15x-30=x^2\left(x+2\right)-2x\left(x+2\right)-15\left(x+2\right)\)

\(=\left(x+2\right)\left(x^2+2x-15\right)=\left(x+2\right)\left(x-3\right)\left(x+5\right)\)

c) \(x^3-6x^2+11x-6=x^3-x^2-5x^2+5x+6x-6=x^2\left(x-1\right)-5x\left(x-1\right)+6\left(x-1\right)=\left(x-1\right)\left(x-2\right)\left(x-3\right)\)

23 tháng 7 2016

1) 

a) (x+y)3-(x+y)= (x+y)(x+y-1)

b) xem lại đề câu B nha bạn

2)

a3+3a2b+3ab2+b3+c3-3a2b-3ab2-3abc=0

(a+b)3+c3-3ab(a+b+c)=0

(a+b+c)(a2+2ab+b2-ac-bc+c2)-3ab(a+b+c)=0

(a+b+c)(a2+b2+c2-xy-yz-xz)=0

Suy ra: a3+b3+c3=3abc

 

7 tháng 10 2016

1. a) = (x+y)3 -(x+y) =(x+y)((x+y)2 -1)

     = (x+y)(x+y+1)(x+y-1)

b) = 5(( x-y)2 - 4z2)

     = 5( x-y +2z)(x-y-2z)

2. áp dụng ( a+b+c)3 = .....rồi biến đổi

     

21 tháng 10 2017

Bài 1 

\(x^5+x^4+1=x^5+x^4+x^3-x^3-x^2-x+x^2+x+1\)

\(=\left(x^5+x^4+x^3\right)+\left(-x^3-x^2-x\right)+\left(x^2+x+1\right)\)

\(=x^3\left(x^2+x+1\right)-x\left(x^2+x+1\right)+\left(x^2+x+1\right)\)

\(=\left(x^3-x+1\right)\left(x^2+x+1\right)\)

Bài 2

Ta có: \(\left(ax+b\right)\left(x^2+cx+1\right)=ax^3+bx^2+acx^2+bcx+ax+b\)

\(=ax^3+\left(b+ac\right)x^2+\left(bc+a\right)x+b=x^3-3x-2\)

\(\Rightarrow a=1\)

\(\Rightarrow b+ac=0\)

\(\Rightarrow bc+a=-3\)

\(\Rightarrow b=-2\)

Thay giá trị của \(a=1;b=-2\)vào \(b+ac=0\)ta được

\(\Leftrightarrow-2+c=0\Rightarrow c=2\)

   Vậy \(a=1;b=-2;c=2\)

Bài 3

Ta có \(\left(x^4-3x^3+2x^2-5x\right)\div\left(x^2-3x+1\right)=x^2+1\left(dư-2x+1\right)\)

\(\Rightarrow b=2x-1\)

Bài 4 (cũng làm tương tự như bài 3 nhé )

Bài 5(bài nãy dễ nên bạn tự làm đi nhé)

Bài 6

\(\left(a+b\right)^2=2\left(a^2+b^2\right)\)

\(\Leftrightarrow a^2+2ab+b^2=2a^2+2b^2\)

\(\Leftrightarrow2a^2+2b^2-a^2-2ab-b^2=0\)

\(\Leftrightarrow a^2-2ab+b^2=0\)

\(\Leftrightarrow\left(a-b\right)^2=0\)\(\Rightarrow a-b=0\Rightarrow a=b\)

Bài 7 

\(a^2+b^2+c^2=ab+ac+bc\)

\(\Leftrightarrow2a^2+2b^2+2c^2=2ab+2ac+2bc\)

\(\Leftrightarrow2a^2+2b^2+2c^2-2ab-2ac-2bc=0\)

\(\Leftrightarrow a^2+a^2+b^2+b^2+c^2+c^2-2ab-2ac-2bc=0\)

\(\Leftrightarrow\left(a^2-2ab+b^2\right)+\left(b^2-2bc+c^2\right)+\left(a^2-2ac+c^2\right)=0\)

\(\Leftrightarrow\left(a-b\right)^2+\left(b-c\right)^2+\left(a-c\right)^2=0\)

\(\Rightarrow a-b=0\Rightarrow a=b\)

\(\Rightarrow b-c=0\Rightarrow b=c\)

\(\Rightarrow a-c=0\Rightarrow a=c\)

   Vậy \(a=b=c\)

21 tháng 10 2017

I don't know

8 tháng 9 2019

\(x^2-y^2+4x+4\)

\(=\left(x+2\right)^2-y^2\)

\(=\left(x+2+y\right)\left(x+2-y\right)\)

\(4x^2-y^2+8\left(y-2\right)\)

\(=4x^2-\left(y^2-8y+16\right)\)

\(=4x^2-\left(y-4\right)^2\)

\(=\left(2x+y-4\right)\left(2x-y+4\right)\)