Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
1. Từ đề bài suy ra (x^2 -7x+6)=0 hoặc x-5=0
Nếu x-5=0 suy ra x=5
Nếu x^2-7x+6=0 suy ra x^2-6x-(x-6)=0
Suy ra x(x-6)-(x-6)=0 suy ra (x-1)(x-6)=0
Suy ra x=1 hoặc x=6.
bài 1 ; \(\left(x^2-7x+6\right)\sqrt{x-5}=0\)
\(< =>\orbr{\begin{cases}x^2-7x+6=0\left(+\right)\\\sqrt{x-5}=0\left(++\right)\end{cases}}\)
\(\left(+\right)\)ta dễ dàng nhận thấy \(1-7+6=0\)
thì phương trình sẽ có nghiệm là \(\orbr{\begin{cases}x=1\\x=\frac{c}{a}=6\end{cases}}\)
\(\left(++\right)< =>x-5=0< =>x=5\)
Vậy tập nghiệm của phương trình trên là \(\left\{1;5;6\right\}\)
a) \(\frac{1}{x_1^2}+\frac{1}{x_2^2}=\frac{x_1^2+x_2^2}{x_1^2x_1^2}=\frac{\left(x_1+x_2\right)^2-2x_1x_2}{\left(x_1x_2\right)^2}\)
b) \(x_1^3+x_2^3=\left(x_1+x_2\right)^3-3x_1x_2\left(x_1+x_2\right)\)
Đến đây bn tự xài Viet đc rồi nhé
1)Xét pt hoành độ của (P) và (d) ta có:
\(x^2=2x+2m\)
\(x^2-2x-2m=0\)
thay m=\(\frac{1}{3}\)
\(x^2-2x-2.\frac{1}{3}=0\)
\(x^2-2x-\frac{2}{3}=0\)
GPT ta được:m=\(\frac{3+\sqrt{15}}{3}\)
m=\(\frac{3-\sqrt{15}}{3}\)
b)Vì A(x1;x2) thuộc (P)=>\(y_1=x_1^2\)
B(x2;y2) thuộc (P)=>\(y_2=x_2^2\)
áp dụng viet đc:
\(x_1+x_2=2\)
\(x_1.x_2=-2m\)
Ta có:(1+y1)(1+y2)=5
\(\left(1+x_1^2\right)\left(1+x_2^2\right)=5\)
\(1+x_2^2+x_1^2+x_1^2x_2^2=5\)
1+(x1+x2)^2-2x1x2+x1^2x2^2=5
1+(2)^2-2.(-2m)+(-2m)^2=5
1+4+4m+4m^2-5=0
4m^2+4m=0
m=-1 và m=0
2)Δ'=(-2m)^2-2.(2m^2-9)
=4m^2-4m^2+2
=2>0 ∀m
=>pt có 2 nghiệm phân biệt ∀ m
b)áp dụng viet:
x1+x2=4m/4=2m
x1.x2=2m^2-1/2
ta có :\(2x_1^2+4mx_2+2m^2-9< 0\)
\(2\left(x_1^2+2mx_2\right)+2m^2-9< 0\)
mà ta có x1+x2=2m
=>\(2\left(x_1^2+\left(x_1+x_2\right)x_2\right)+2m^2-9< 0\)
\(2\left(x_1^2+x_1x_2+x_2^2\right)+2m^2-9< 0\)
2{(x1^2+x2^2)+x1x2}+2m^2-9<0
2{x1+x2)^2-2x1x2+x1x2)+2m^2-9<0(cái này dùng phương pháp thêm bớt để tạo hàng đẳng thức nha bạn)
2{(x1+x2)^2-x1x2)+2m^2-9<0
còn lại bạn tự thay số rồi tính nha.Nhớ tick cho mk đó
1) Dùng vi-et rồi phân tích A là ok
2) a) dùng viet , rồi làm sao để khử đc m thông qua S và P là đc
b) pt có 2 nghiệm dương pb : \(\left\{{}\begin{matrix}\Delta>0\\s>0\\p>0\end{matrix}\right.\)
c) 2 nghiem trái dấu : \(\left\{{}\begin{matrix}\Delta\ge0\\p>0\end{matrix}\right.\)
d) cùng âm : \(\left\{{}\begin{matrix}\Delta\ge0\\s< 0\\p>0\end{matrix}\right.\)
e) (x1+x2)2-2x1.x2=x1+x2 ( thay viet vô)
\(x^3_1-x_2^3=\left(\left(x_1-x_2\right)\left(x^2_1+x_1x_2+x_2^2\right)=\left(x_1-x_2\right)\left[\left(x_1+x_2\right)\right]^2-x_1x_2=......\right)\)