K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

29 tháng 5 2019

1)Xét pt hoành độ của (P) và (d) ta có:

\(x^2=2x+2m\)

\(x^2-2x-2m=0\)

thay m=\(\frac{1}{3}\)

\(x^2-2x-2.\frac{1}{3}=0\)

\(x^2-2x-\frac{2}{3}=0\)

GPT ta được:m=\(\frac{3+\sqrt{15}}{3}\)

m=\(\frac{3-\sqrt{15}}{3}\)

b)Vì A(x1;x2) thuộc (P)=>\(y_1=x_1^2\)

B(x2;y2) thuộc (P)=>\(y_2=x_2^2\)

áp dụng viet đc:

\(x_1+x_2=2\)

\(x_1.x_2=-2m\)

Ta có:(1+y1)(1+y2)=5

\(\left(1+x_1^2\right)\left(1+x_2^2\right)=5\)

\(1+x_2^2+x_1^2+x_1^2x_2^2=5\)

1+(x1+x2)^2-2x1x2+x1^2x2^2=5

1+(2)^2-2.(-2m)+(-2m)^2=5

1+4+4m+4m^2-5=0

4m^2+4m=0

m=-1 và m=0

29 tháng 5 2019

2)Δ'=(-2m)^2-2.(2m^2-9)

=4m^2-4m^2+2

=2>0 ∀m

=>pt có 2 nghiệm phân biệt ∀ m

b)áp dụng viet:

x1+x2=4m/4=2m

x1.x2=2m^2-1/2

ta có :\(2x_1^2+4mx_2+2m^2-9< 0\)

\(2\left(x_1^2+2mx_2\right)+2m^2-9< 0\)

mà ta có x1+x2=2m

=>\(2\left(x_1^2+\left(x_1+x_2\right)x_2\right)+2m^2-9< 0\)

\(2\left(x_1^2+x_1x_2+x_2^2\right)+2m^2-9< 0\)

2{(x1^2+x2^2)+x1x2}+2m^2-9<0

2{x1+x2)^2-2x1x2+x1x2)+2m^2-9<0(cái này dùng phương pháp thêm bớt để tạo hàng đẳng thức nha bạn)

2{(x1+x2)^2-x1x2)+2m^2-9<0

còn lại bạn tự thay số rồi tính nha.Nhớ tick cho mk đóhaha

AH
Akai Haruma
Giáo viên
13 tháng 7 2020

Bài 5:

Để pt có 2 nghiệm $x_1,x_2$ thì:

$\Delta'=(m-1)^2-m^2\geq 0$

$\Leftrightarrow (m-1-m)(m-1+m)\geq 0$

$\Leftrightarrow 1-2m\geq 0\Leftrightarrow m\leq \frac{1}{2}(*)$

Áp dụng định lý Viet: \(\left\{\begin{matrix} x_1+x_2=2(m-1)\\ x_1x_2=m^2\end{matrix}\right.\)

Khi đó:

$(x_1-x_2)^2+6m=x_1-2x_2$

$\Leftrightarrow (x_1+x_2)^2-4x_1x_2+6m=(x_1+x_2)-3x_2$

$\Leftrightarrow 4(m-1)^2-4m^2+6m=2(m-1)-3x_2$

$\Leftrightarrow 4m-6=3x_2$

$\Leftrightarrow x_2=\frac{4}{3}m-2$

$x_1=2(m-1)-x_2=\frac{2}{3}m$

Suy ra:

$x_1x_2=m^2$

$\Leftrightarrow \frac{2}{3}m(\frac{4}{3}m-2)=m^2$

$\Leftrightarrow m(8m-12-9m)=0$

$\Leftrightarrow m(-m-12)=0$

$\Leftrightarrow m=0$ hoặc $m=-12$. Theo $(*)$ ta thấy 2 giá trị này đều thỏa mãn.

AH
Akai Haruma
Giáo viên
13 tháng 7 2020

Bài 4:

Để pt có 2 nghiệm thì $\Delta'=4-2(2m^2-1)\geq 0$

$\Leftrightarrow m^2-1\leq 0\Leftrightarrow -1\leq m\leq 1$

Áp dụng định lý Viet: \(\left\{\begin{matrix} x_1+x_2=2\\ x_1x_2=\frac{2m^2-1}{2}\end{matrix}\right.\)

Khi đó:

$2x_1^2+4mx_2+2m^2-1\geq 0$

$\Leftrightarrow (2x_1^2-4mx_1+2m^2-1)+4mx_1+4mx_2\geq 0$

$\Leftrightarrow 0+4m(x_1+x_2)\geq 0$

$\Leftrightarrow 4m. 2\geq 0$

$\Leftrightarrow m\geq 0$

Kết hợp với điều kiện $-1\leq m\leq 1$ suy ra $0\leq m\leq 1$ thì ycđb được thỏa mãn.

5 tháng 3 2022

a, \(\Delta'=1-\left(2m-5\right)=6-2m\)

để pt có nghiệm kép \(6-2m=0\Leftrightarrow m=3\)

b, để pt có 2 nghiệm pb \(6-2m>0\Leftrightarrow m< 3\)

Theo Vi et \(\left\{{}\begin{matrix}x_1+x_2=2\\x_1x_2=2m-5\end{matrix}\right.\)

Ta có \(\left(x_1+x_2\right)^2-7x_1x_2=0\)

\(4-7\left(2m-5\right)=0\Leftrightarrow2m-5=\dfrac{4}{7}\Leftrightarrow m=\dfrac{39}{14}\)(tm) 

5 tháng 3 2022

a) Xét pt \(x^2-2x+2m-5=0\), có \(\Delta'=\left(-1\right)^2-\left(2m-5\right)=1-2m+5=6-2m\)

Để pt có nghiệm kép thì \(\Delta'=0\)hay \(6-2m=0\)\(\Leftrightarrow m=3\)

b) Để pt có 2 nghiệm phân biệt thì \(\Delta'>0\)hay \(6-2m>0\)\(\Leftrightarrow m< 3\)

Khi đó, ta có \(\hept{\begin{cases}x_1+x_2=2\\x_1x_2=2m-5\end{cases}}\)(hệ thức Vi-ét)

Từ đó \(x_1^2+x_2^2=5x_1x_2\)\(\Leftrightarrow\left(x_1+x_2\right)^2=7x_1x_2\)\(\Leftrightarrow2^2=7\left(2m-5\right)\)\(\Leftrightarrow4=14m-35\)\(\Leftrightarrow14m=39\)\(\Leftrightarrow m=\frac{39}{14}\)(nhận)

Vậy để [...] thì \(m=\frac{39}{14}\)

5 tháng 6 2018

1. Từ đề bài suy ra (x^2 -7x+6)=0 hoặc x-5=0

Nếu x-5=0 suy ra x=5

Nếu x^2-7x+6=0 suy ra x^2-6x-(x-6)=0

Suy ra x(x-6)-(x-6)=0 suy ra (x-1)(x-6)=0

Suy ra x=1 hoặc x=6.

4 tháng 7 2020

bài 1 ; \(\left(x^2-7x+6\right)\sqrt{x-5}=0\)

\(< =>\orbr{\begin{cases}x^2-7x+6=0\left(+\right)\\\sqrt{x-5}=0\left(++\right)\end{cases}}\)

\(\left(+\right)\)ta dễ dàng nhận thấy \(1-7+6=0\)

thì phương trình sẽ có nghiệm là \(\orbr{\begin{cases}x=1\\x=\frac{c}{a}=6\end{cases}}\)

\(\left(++\right)< =>x-5=0< =>x=5\)

Vậy tập nghiệm của phương trình trên là \(\left\{1;5;6\right\}\)

Ta có : \(x^2-2\left(m-1\right)x+2m-5=0\left(a=1;b=-2m+2;c=2m-5\right)\)

a, Để pt có 2 nghiệm phân biệt thì \(\Delta>0\)hay 

\(\left(-2m+2\right)^2-4\left(2m-5\right)=4m^2+4-8m+20=4m^2-8m+24>0\)

b, Theo hệ thức Vi et ta có : \(x_1+x_2=2m-2;x_1x_2=2m-5\)

Theo bài ra ta có : mk để \(x_1;x_2\)lần lượt là \(a;b\)nhé 

\(\left(a^2-2ma-b+2m-3\right)\left(b^2-2mb-a+2m-3\right)=19\)

Do a;b là nghiệm nên a;b thỏa mãn pt đã cho nghĩa : \(\hept{\begin{cases}a^2-2\left(m-1\right)a+2m-5=0\\a^2-2\left(m-1\right)b+2m-5=0\end{cases}}\)

\(\Leftrightarrow\hept{\begin{cases}-2a+2\\-2b+2\end{cases}}\)Thay vào pt trên ta đc : \(\left(-2a+2\right)\left(-2b+2\right)=19\)

\(\Leftrightarrow4ab+2a^2-4a+2b^2+ab-2b-4b-2a+4=19\)

\(\Leftrightarrow2\left(a+b\right)^2-6\left(a+b\right)+ab=15\) Thay vào ta lại có pt mới : 

\(2\left(2m-2\right)^2-6\left(2m-2\right)+2m-5=15\)

\(\Leftrightarrow2\left(4m-4\right)-12m+12+2m-5-15=0\)

\(\Leftrightarrow8m-8-12m+2m+12-5-15=0\)

\(\Leftrightarrow-2m-16=0\Leftrightarrow-2m=16\Leftrightarrow m=-8\)

8 tháng 7 2020

em cảm ơn nhiều ạ

8 tháng 7 2020

dạ, cảm ơn ạ

2 tháng 7 2020

a, Để phương trình có 2 nghiệm phân biệt thì 

\(\Delta=\left(2m-1\right)^2-4\left(m^2-1\right)>0\)

\(< =>4m^2-4m+1-4m^2+1>0\)

\(< =>2-4m>0\)\(< =>2>4m< =>m< \frac{2}{4}\)

b , bạn dùng vi ét là ra