Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
=X^7+x^6+x^5=x^4+x^3+x^2+1-x^6-x^5-x^4-x^3
=x^5(x^2=x+1)+(x^2+1)-x^4(x^^2-x+1)
=(x^2+x+1)(x^5+x^2-x^4)-(x-1)(x^2+x+1)
=(x^2+1+x)(x^5+x^2-X^4-x+1)
mik lm rồi nên chắc đúng
\(x^7+x^2+1=x^7+x^6+x^5-x^6-x^5-x^4+x^4+x^2+x+1-x\)
\(=x^5\left(x^2+x+1\right)-x^4\left(x^2+x+1\right)+x\left(x^3-1\right)+\left(x^2+x+1\right)\)
\(=x^5\left(x^2+x+1\right)-x^4\left(x^2+x+1\right)+x\left(x-1\right)\left(x^2+x+1\right)+\left(x^2+x+1\right)\)
\(=\left(x^2+x+1\right)\left(x^5-x^4+x^2-x+1\right)\)
x^7+x^2+2
=(x^7+x^6+x^5)-(x^6+x^5+x^4)+(x^4+x^3+x^2) +(1 -x^3)
=x^5(x^2+1)-x^4(x^2+1)+x^2(x^2+1)+(1-x)(1+x+x^2)
=(x^2+1)(x^5-x^4+x^2-x+1)
x7+x6+x5-x6-x5-x4+x5+x4+x3-x3-x2-x1+x2+x1+1
= x5(x2+x+1) - x4(x2+x+1)+x3(x2+x+1)-x(x2+x+1) +(x2+x+1)
=(x2+x+1)( x5-x4+x3-x+1)
────(♥)(♥)(♥)────(♥)(♥)(♥) __ ɪƒ ƴσυ’ʀє αʟσηє,
──(♥)██████(♥)(♥)██████(♥) ɪ’ʟʟ ɓє ƴσυʀ ѕɧα∂σѡ.
─(♥)████████(♥)████████(♥) ɪƒ ƴσυ ѡαηт тσ cʀƴ,
─(♥)██████████████████(♥) ɪ’ʟʟ ɓє ƴσυʀ ѕɧσυʟ∂єʀ.
──(♥)████████████████(♥) ɪƒ ƴσυ ѡαηт α ɧυɢ,
────(♥)████████████(♥) __ ɪ’ʟʟ ɓє ƴσυʀ ρɪʟʟσѡ.
──────(♥)████████(♥) ɪƒ ƴσυ ηєє∂ тσ ɓє ɧαρρƴ,
────────(♥)████(♥) __ ɪ’ʟʟ ɓє ƴσυʀ ѕɱɪʟє.
─────────(♥)██(♥) ɓυт αηƴтɪɱє ƴσυ ηєє∂ α ƒʀɪєη∂,
───────────(♥) __ ɪ’ʟʟ ʝυѕт ɓє ɱє.
a) \(x^5+x-1\)
\(=x^5+x^4+x^3+x^2-x^4-x^3-x^2+x-1\)
\(=\left(x^5-x^4+x^3\right)+\left(x^4-x^3+x^2\right)-\left(x^2-x+1\right)\)
\(=x^3\left(x^2-x+1\right)+x^2\left(x^2-x+1\right)-\left(x^2-x+1\right)\)
\(=\left(x^2-x+1\right)\left(x^3+x^2-1\right)\)(còn 1 cách nữa là thêm bớt \(x^2\)vào bạn nhé!)
b) \(x^7+x^2+1\)
\(=x^7-x+x^2+x+1\)
\(=x\left(x^6-1\right)+\left(x^2+x+1\right)\)
\(=x\left(x^3+1\right)\left(x^3-1\right)+\left(x^2+x+1\right)\)
\(=x\left(x^3+1\right)\left(x-1\right)\left(x^2+x+1\right)+\left(x^2+x+1\right)\)
\(=\left(x^2+x+1\right)\left[x\left(x^3+1\right)\left(x-1\right)+1\right]\)
\(=\left(x^2+x+1\right)\left(x^5-x^4+x^2-x+1\right)\)
(Chúc bạn học tốt và nhớ tíck cho mình với nhé!)
A= \(x.\left\{\left[x.\left(x^2-7\right)\right]^2-6^2\right\}=x.\left[x.\left(x^2-7\right)-6\right].\left[x.\left(x^2-7\right)+6\right]\)
A=\(x.\left[x^3-7x-6\right].\left[x^3-7x+6\right]\)
A= \(x.\left(x-3\right).\left(x+1\right).\left(x+2\right).\left(x+3\right).\left(x-1\right).\left(x-2\right)\)
x^3.(x^2-7)^2-36x
=x(x^6-14x^4+49x^2-36)
=x.[x^4(x^2-1)-13x^2(x^2-1)+36(x^2-1)
=x(x-1)(x+1)(x^4-13X^2+36)
=x(x-1)(x+1)[x^2(x^2-4)-9(x^2-4)]
=x(x-1)(x+1)(x-2)(x+2)(x-3)(x+3)
Ta có : x3 . ( x2 - 7 )2 - 36x
=> x ( x6 - 14x4 + 49x2 - 36 )
=> x [ x4 ( x2 - 1 ) - 13x2 ( x2 - 1 ) + 36 ( x2 - 1 )
=> x ( x - 1 ) ( x + 1 ) ( x4 - 13x2 + 36 )
=> x ( x - 1 ) ( x + 1 ) [ x2 ( x2 - 4 ) - 9 ( x2 - 4 ) ]
=> x ( x - 1 ) ( x + 1 ) ( x - 2 ) ( x + 2 ) ( x - 3 ) ( x + 3 )
= x7.(x2 - 1)
tk mik nha