Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có : \(M=\left(x^2+3x+2\right)\left(x^2+7x+12\right)+1=\left(x+1\right)\left(x+2\right)\left(x+3\right)\left(x+4\right)+1\)
\(=\left[\left(x+1\right)\left(x+4\right)\right].\left[\left(x+2\right)\left(x+3\right)\right]+1=\left(x^2+5x+4\right)\left(x^2+5x+6\right)+1\)
Đặt \(t=x^2+5x+5\) \(\Rightarrow M=\left(t-1\right)\left(t+1\right)+1=t^2-1+1=t^2\)
Vậy \(M=\left(x^2+5x+5\right)^2\)
\(\left(x+2\right)\left(x+3\right)\left(x+8\right)\left(x+12\right)-4x^2\)
\(=\left(x+2\right)\left(x+12\right)\left(x+3\right)\left(x+8\right)-4x^2\)
\(=\left(x^2+14x+24\right)\left(x^2+11x+24\right)-\left(2x\right)^2\)
Đặt \(x^2+11x+24=a\)
\(=a\left(a+3x\right)-4x^2=a^2+3ax-4x^2=a^2-ax+4ax-4x^2=\left(a-x\right)\left(a+4x\right)\)
Đặt x2+x+1=t
Ta có: t(t+1)-12 = t2+t-12 = t2+4t-3t-12 = t(t+4) -3(t+4) =(t-3)(t+4) = (x2+x+1-3)(x2+x+1+4) =(x2+x-2)(x2+x+5).
(x2+x+1)(x2+x+2)-12
=\(\left(x^2+x+\frac{3}{2}-\frac{1}{2}\right)\left(x^2+x+\frac{3}{2}+\frac{1}{2}\right)-12\)
=\(\left(x^2+x+\frac{3}{2}\right)^2-\frac{1}{4}-12\)
=\(\left(x^2+x+\frac{3}{2}\right)^2-\frac{49}{4}\)
=\(\left(x^2+x+\frac{3}{2}-\frac{7}{2}\right)\left(x^2+x+\frac{3}{2}+\frac{7}{2}\right)\)
=\(\left(x^2+x-2\right)\left(x^2+x+5\right)\)
\(A=\left(x^2+x+1\right)\left(x^2+x+2\right)-12\)
Đặt: \(x^2+x+1=t\) Khi đó ta có:
\(A=t\left(t+1\right)-12\)
\(=t^2+t-12=\left(t-3\right)\left(t+4\right)\)
Thay trở lại đc:
\(A=\left(x^2+x-2\right)\left(x^2+x+5\right)\)
\(=\left(x-1\right)\left(x+2\right)\left(x^2+x+5\right)\)
Bài làm:
Ta có: \(\left(x-y\right)^2+4\left(x-y\right)-12\)
\(=\left[\left(x-y\right)^2-4\left(x-y\right)+4\right]-16\)
\(=\left(x-y-2\right)^2-4^2\)
\(=\left(x-y-2-4\right)\left(x-y-2+4\right)\)
\(=\left(x-y-6\right)\left(x-y+2\right)\)
\(\left(x-y\right)^2+4\left(x-y\right)-12\)
\(=\left(x-y\right)^2+2.2.\left(x-y\right)+4-16\)
\(=\left(x-y+2\right)^2-4^2\)
\(=\left(x-y+6\right)\left(x-y-2\right)\)
Đặt \(x^2-3x-1=a\), ta có:
\(a^2-12a+27=a^2-9a-3a+27=a\left(a-9\right)-3\left(a-9\right)=\left(a-9\right)\left(a-3\right)\)
\(=\left(x^2-3x-1-9\right)\left(x^2-3x-1-3\right)=\left(x^2-3x-10\right)\left(x^2-3x-4\right)\)
Mà \(x^2-3x-10=x^2-5x+2x-10=x\left(x-5\right)+2\left(x-5\right)=\left(x-5\right)\left(x+1\right)\)
và \(x^2-3x-4=x^2+x-4x-4=x\left(x+1\right)-4\left(x+1\right)=\left(x+1\right)\left(x-4\right)\)
\(\Rightarrow\left(x^2-3x-1\right)^2-12\left(x^2-3x-1\right)+27=\left(x-5\right)\left(x-4\right)\left(x+1\right)\left(x+2\right)\)
=x^2-4x+3x-12
=x[x-4]+3[x-4]
=[x+3][x-4]
C2:=x^2-16-[x-4]
=[x-4][x+4]-[x-4]
=[x-4][x+4-1]
=[x-4][x+3]
Cách nữa nè !
x^2-x-12
=(x^2-9)-(x+3)
=(x-3)(x+3)-(x+3)
=(x+3)(x-4)
Đặt x^2 + x+ 1 = a => x^2 + x + 2 =a + 1
Thay vòa ta có :
a( a+ 1 ) - 12 = a^2 + a - 12 = a^2 + 4a - 3a - 12
=a (a+4) - 3 ( a+ 4 )
= ( a- 3 )(a+4)
Thây x^2 + x + 1 = a vào ta có
(x^2 + x + 1 - 3 )(x^2 + x + 1 + 4 )
= ( x^2 + x - 2 )( x^ 2 + x + 5 )
đặt t=x2+x+1 ta được:
t.(t+1)-12
=t2-t-12
=t2+3x-4t-12
=t.(t+3)-4.(t+3)
=(t+3)(t-4)
thay t=x2+x+1 ta được:
(x2+x+4)(x2+x-3)
vậy (x2 + x + 1) . (x2 + x + 2) - 12=(x2+x+4)(x2+x-3)
x2 - x - 12
= x2 - 4x + 3x - 12
= x(x - 4) + 3(x - 4)
= (x + 3)(x - 4)
\(x^2-x-12\)
\(=x^2-4x+3x-12\)
\(=x\left(x-4\right)+3\left(x-4\right)\)
\(=\left(x-4\right)\left(x+3\right)\)