Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Bài làm :
- Cách 1: x2- 6x + 8
= x2 - 2x - 4x + 8
= x (x - 2) - 4(x -2)
= (x - 4)(x -2)
- Cách 2: x2 - 6x + 8
= x2 - 6x + 9 - 1
= ( x - 3)2 - 1
=( x -3 - 1)( x- 3 + 1)
= (x - 4)(x -2)
- Cách 3: x2 - 6x + 8
= x2 - 16 - 6x + 24
=( x - 4)(x + 4 ) - 6 (x - 4)
=(x - 4)(x + 4 - 6)
= (x - 4)(x -2)
Chúc bạn học tốt !!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!
mình cũng được tròn 3 cách
c1 \(x^2-6x+8=x^2-2x-4x+8=x\left(x-2\right)-4\left(x-2\right)=\left(x-4\right)\left(x-2\right)\)
c2 \(x^2-6x+8=\left(x^2-6x+9\right)-1=\left(x-3\right)^2-1=\left(x-4\right)\left(x-2\right)\)
c3 Gỉa sử \(x^2-6x+8=\left(x+a\right)\left(x+b\right)=x^2+\left(a+b\right)x+ab\)
Cân bằng hệ số ta được \(\hept{\begin{cases}a+b=-6\\ab=8\end{cases}< =>\orbr{\begin{cases}a=-4\\b=-2\end{cases}or\orbr{\begin{cases}a=-2\\b=-4\end{cases}}}}\)
Vậy ta có : \(\left(x+a\right)\left(x+b\right)=\left(x-2\right)\left(x-4\right)\)
1) \(25-x^2-y^2+2xy=5^2-\left(x^2-2xy+y^2\right)=5^2-\left(x-y\right)^2\)\(=\left(5-x+y\right)\left(5+x-y\right)\)
2) \(3x-3y-x^2+2xy-y^2\)\(=3\left(x-y\right)-\left(x^2-2xy+y^2\right)\)\(=3\left(x-y\right)-\left(x-y\right)^2\)\(=\left(x-y\right)\left(3-x+y\right)\)
1) \(25-x^2-y^2+2xy\)
\(=5^2-\left(x^2+y^2-2xy\right)\)
\(=5^2-\left(x-y\right)^2\)
\(=\left(x-y-5\right)\left(x-y+5\right)\)
2) \(3x-3y-x^2+2xy-y^2\)
\(=3\left(x-y\right)-\left(x^2-2xy+y^2\right)\)
\(=3\left(x-y\right)-\left(x-y\right)\left(x-y\right)\)
\(=\left(3-x+y\right)\left(x-y\right)\)
\(x^2+x-6=x^2-2x+3x-6=x\left(x-2\right)+3\left(x-2\right)=\left(x-2\right)\left(x+3\right)\)
\(x^2+x-6=x^2+2.\frac{1}{2}x+\frac{1}{4}-\frac{25}{4}=\left(x+\frac{1}{2}\right)^2-\frac{25}{4}=\left(x+\frac{1}{2}-\frac{5}{2}\right)\left(x+\frac{1}{2}+\frac{5}{2}\right)=\left(x-2\right)\left(x+3\right)\)
x2+x-6=x3+3x-2x-6=x(x+3)-2(x+3)=(x+3)(x-2)
x2+x-6=\(x^2+x+\frac{1}{4}-6-\frac{1}{4}=\left(x+\frac{1}{2}\right)^2-\left(\frac{5}{2}\right)^2=\left(x+\frac{1}{2}-\frac{5}{2}\right)\left(x+\frac{1}{2}+\frac{5}{2}\right)=\left(x-2\right)\cdot\left(x+3\right)\)
C1 : \(x^2-6x+8=\left(x^2-4x\right)-\left(2x-8\right)=x\left(x-4\right)-2\left(x-4\right)=\left(x-2\right)\left(x-4\right)\)
C2 : \(x^2-6x+8=\left(x^2-6x+9\right)-1=\left(x-3\right)^2-1=\left(x-2\right)\left(x-4\right)\)
C3 : \(x^2-6x+8=\left(x^2-2x\right)-\left(4x-8\right)=x\left(x-2\right)-4\left(x-2\right)=\left(x-4\right)\left(x-2\right)\)
C4 : \(x^2-6x+8=x^2-4-6x+12=\left(x-2\right)\left(x+2\right)-6\left(x-2\right)=\left(x-2\right)\left(x-4\right)\)
C5: \(x^2-6x+8=x^2-16-6x+24=\left(x-4\right)\left(x+4\right)-6\left(x-4\right)=\left(x-4\right)\left(x-2\right)\)
a) \(\left(x-7\right)\left(x+2\right)\)
b) \(\left(2x-3\right)\left(x+2\right)\)
ta có:( x2-2x3+32)-4= (x-3)2-22=[(x-3)-2][(x-3)+2]