Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Bài 1 :
\(x^2-6x+8=x^2-2x-4x+8=x\left(x-2\right)-4\left(x-2\right)=\left(x-4\right)\left(x-2\right)\)
Bài 2 :
\(x^8+x^7+1=x^8+x^7+x^6+x^5+x^4+x^3+x^2+x+1-x^6-x^5-x^4-x^3-x^2-x\)
\(=x^6\left(x^2+x+1\right)+x^3\left(x^2+x+1\right)+x^2+x+1-x^4\left(x^2+x+1\right)-x\left(x^2+x+1\right)\)
=\(\left(x^2+x+1\right)\left(x^6+x^3+1-x^4-x\right)\)
Tick đúng nha
\(x^{16}+x^8+1\)
\(=x^{16}+2x^8+1-x^8\)
\(=\left(x^8+1\right)^2-x^8\)
\(=\left(x^8-x^4+1\right)\left(x^8+x^4+1\right)\)
\(=\left(x^8-x^4+1\right)\left(x^8+2x^4+1-x^4\right)\)
\(=\left(x^8-x^4+1\right)\left[\left(x^4+1\right)^2-x^4\right]\)
\(=\left(x^8-x^4+1\right)\left(x^4-x^2+1\right)\left(x^4+x^2+1\right)\)
\(=\left(x^8-x^4+1\right)\left(x^4-x^2+1\right)\left(x^2-x+1\right)\left(x^2+x+1\right)\)
\(=x^7\left(x^2+x+1\right)-\left(x-1\right)\left(x^2+x+1\right)=\left(x^2+x+1\right)\left(x^7-x+1\right).\)
TL:
\(x^9+x^8+x^7-x^3+1\)1
\(=x^7\left(x^2+x+1\right)-\left(x^3-1\right)\)
\(=x^7\left(x^2+x+1\right)-\left(x-1\right)\left(x^2+x+1\right)\)
\(=\left(x^7-x+1\right)\left(x^2+x+1\right)\)
hc tốt
\(A=\left(x-1\right)\left(x-2\right)\left(x+7\right)\left(x+8\right)+8\)
\(A=\left[\left(x-1\right)\left(x+7\right)\right]\left[\left(x-2\right)\left(x+8\right)\right]+8\)
\(A=\left(x^2+6x-7\right)\left(x^2+6x-16\right)+8\)
Đặt \(q=x^2+6x-7\)ta có :
\(A=q\left(q-9\right)+8\)
\(A=q^2-9q+8\)
\(A=q^2-q-8q+8\)
\(A=q\left(q-1\right)-8\left(q-1\right)\)
\(A=\left(q-1\right)\left(q-8\right)\)
Thay \(q=x^2+6x-7\)vào A ta được :
\(A=\left(x^2+6x-7-1\right)\left(x^2+6x-7-8\right)\)
\(A=\left(x^2+6x-8\right)\left(x^2+6x-15\right)\)
đề sai nha bạn
mình sửa đề cho:
\(A=\left(x+1\right)\left(x+2\right)\left(x+7\right)\left(x+8\right)+8\)
\(A=\left(x+1\right)\left(x+8\right)\left(x+2\right)\left(x+7\right)+8\)
\(A=\left(x^2+9x+8\right)\left(x^2+9x+14\right)+8\)
Đặt \(x^2+9x+8=a\)
\(\Rightarrow A=a\left(a+6\right)+8=a^2+6a+8=\left(a+2\right)\left(a+4\right)\)
\(\Rightarrow A=\left(x^2+9x+8+2\right)\left(x^2+9x+8+4\right)=\left(x^2+9x+10\right)\left(x^2+9x+12\right)\)
M = x9 - x7 + x6 - x5 - x4 + x3 - x2 + 1
= ( x9 - x7 ) + ( x6 - x4 ) - ( x5 - x3 ) - ( x2 - 1 )
= x7( x2 - 1 ) + x4( x2 - 1 ) - x3( x2 - 1 ) - ( x2 - 1 )
= ( x2 - 1 )( x7 + x4 - x3 - 1 )
= ( x - 1 )( x + 1 )[ x4( x3 + 1 ) - ( x3 + 1 ) ]
= ( x - 1 )( x + 1 )( x3 + 1 )( x4 - 1 )
= ( x - 1 )( x + 1 )( x + 1 )( x2 - x + 1 )( x2 - 1 )( x2 + 1 )
= ( x + 1 )2( x - 1 )( x2 - x + 1 )( x - 1 )( x + 1 )( x2 + 1 )
= ( x + 1 )3( x - 1 )2( x2 + 1 )( x2 - x + 1 )
Ta có :
\(x^8+x^7+1\)
\(=\left(x^8+x^7+x^6\right)-x^6+1\)
\(=x^6\left(x^2+x+1\right)-\left[\left(x^3\right)^2-1^2\right]\)
\(=x^6\left(x^2+x+1\right)-\left(x^3-1\right)\left(x^3+1\right)\)
\(=x^6\left(x^2+x+1\right)-\left(x^3+1\right)\left(x-1\right)\left(x^2+x+1\right)\)
\(=\left(x^2+x+1\right)\left[x^6-\left(x^3+1\right)\left(x-1\right)\right]\)
\(=\left(x^2+x+1\right)\left[x^6-\left(x^4-x^3+x-1\right)\right]\)
\(=\left(x^2+x+1\right)\left(x^6-x^4+x^3-x+1\right)\)
x^9 + x^8 + x^7 - x^3 + 1
= x^7 ( x^2 + x + 1 ) - ( x^3 - 1 )
= x^7 ( x^2 + x + 1 ) - ( x - 1 )(x^2 + x + 1 )
= ( x^7 - x + 1 )(x^2 + x + 1 )