K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

b mk thấy nó sai đề sao ý 

c) \(C=\left(x^2+x+4\right)^2+8x\left(x^2+x+4\right)+15x^2\)

\(=\left(x^2+x+4\right)^2+2.4x.\left(x^2+x+4\right)+16x^2-x^2\)

\(=\left(x^2+x+4+4x\right)^2-x^2\)

\(=\left(x^2+5x+4\right)^2-x^2\)

\(=\left(x^2+5x+4-x\right)\left(x^2+5x+4+x\right)=\left(x^2+4x+4\right)\left(x^2+6x+4\right)\)

22 tháng 5 2018

a) \(4x^3\left(x^2+x\right)-\left(x^2+x\right)=\left(x^2+x\right)\left(4x^3-1\right)\)

b)\(\left(1-2a+a^2\right)-\left(b^2-2bc+c^2\right)=\left(1-a\right)^2-\left(b-c\right)^2=\)\(\left(1-a+b-c\right)\left(1-a-b+c\right)\)

22 tháng 5 2018

lm tiếp câu c

c)  \(C=\left(x-7\right)\left(x-5\right)\left(x-4\right)\left(x-2\right)-72\)

\(=\left[\left(x-7\right)\left(x-2\right)\right]\left[\left(x-5\right)\left(x-4\right)\right]-72\)

\(=\left(x^2-9x+14\right)\left(x^2-9x+20\right)-72\)

Đặt   \(x^2-9x+17=a\) ta có:

        \(C=\left(a-3\right)\left(a+3\right)-72\)

            \(=a^2-9-72\)

           \(=a^2-81=\left(a-9\right)\left(a+9\right)\)
Thay trở lại ta được:  \(C=\left(x^2-9x++8\right)\left(x^2-9x+26\right)\)

          

28 tháng 9 2017

a)\(\left(x^2-x+2\right)^2+\left(x-2\right)^2=x^4+x^2+4-2x^3-4x+4x^2+x^2-4x+4\)

\(=x^4-2x^3+6x^2-8x+8=\left(x^4-2x^3+2x^2\right)+\left(4x^2-8x+8\right)\)

\(=x^2\left(x^2-2x+2\right)+4\left(x^2-2x+2\right)=\left(x^2-2x+2\right)\left(x^2+4\right)\)

b)\(x^4+6x^3+7x^2-6x+1=\left(x^2\right)^2+\left(3x\right)^2+\left(-1\right)^2+2.x^2.3x\)+2.3x.(-1)+2.x2.(-1)

\(=\left(x^2+3x-1\right)^2\)

26 tháng 9 2017

\(a^4\left(b^2-c^2\right)+b^4\left(c^2-a^2\right)+c^4\left(a^2-b^2\right)\)

\(=a^4\left(b^2-c^2\right)+b^4\left(c^2-b^2+b^2-a^2\right)+c^4\left(a^2-b^2\right)\)

\(=a^4\left(b^2-c^2\right)+b^4\left(c^2-b^2\right)+b^4\left(b^2-a^2\right)+c^4\left(a^2-b^2\right)\)

\(=a^4\left(b^2-c^2\right)-b^4\left(b^2-c^2\right)-b^4\left(a^2-b^2\right)+c^4\left(a^2-b^2\right)\)

\(=\left(a^4-b^4\right)\left(b^2-c^2\right)+\left(c^4-b^4\right)\left(a^2-b^2\right)\)

\(=\left(a^2-b^2\right)\left(a^2+b^2\right)\left(b^2-c^2\right)-\left(b^2-c^2\right)\left(c^2+b^2\right)\left(a^2-b^2\right)\)

\(=\left(a^2-b^2\right)\left(b^2-c^2\right)\left(a^2+b^2-c^2-b^2\right)\)

\(=\left(a^2-b^2\right)\left(b^2-c^2\right)\left(a^2-c^2\right)\)

\(=\left(a-b\right)\left(a+b\right)\left(b-c\right)\left(b+c\right)\left(a-c\right)\left(a+c\right)\)

16 tháng 10 2020

(x - 5)2 - 4(x - 3)2 + 2(2x - 1)(x - 5) + (2x - 1)2

= [(x - 5)2 + 2(2x - 1)(x - 5) + (2x - 1)2) - [2(x - 3)]2

= (x - 5 + 2x - 1)2 - (2x - 6)2

= (3x - 6)2 - (2x - 6)2

= (3x - 6 - 2x + 6)(3x - 6 + 2x - 6) = x(5x - 12)

16 tháng 10 2020

( x - 5 )2 - 4( x - 3 )2 + 2( 2x - 1 )( x - 5 ) + ( 2x - 1 )2

= [ ( x - 5 )2 + 2( 2x - 1 )( x - 5 ) + ( 2x - 1 )2 ] - 22( x - 3 )2

= ( x - 5 + 2x - 1 )2 - ( 2x - 6 )2

= ( 3x - 6 )2 - ( 2x - 6 )2

= ( 3x - 6 - 2x + 6 )( 3x - 6 + 2x - 6 )

= x( 5x - 12 )

17 tháng 11 2019

x ở đâu ra vại @

5 tháng 10 2020

a) 16x2 - ( x2 + 4 )2

= ( 4x )2 - ( x2 + 4 )2

= [ 4x - ( x2 + 4 ) ][ 4x + ( x2 + 4 ) ]

= ( -x2 + 4x - 4 )( x2 + 4x + 4 )

= [ -( x2 - 4x + 4 ) ]( x + 2 )2

= [ -( x - 2 )2 ]( x + 2 )2

b) ( x + y )3 + ( x - y )3

= [ ( x + y ) + ( x - y ) ][ ( x + y )2 - ( x + y )( x - y ) + ( x - y )2 ]

= ( x + y + x - y )[ x2 + 2xy + y2 - ( x2 - y2 ) + x2 - 2xy + y2 ]

= 2x( 2x2 + 2y2 - x2 + y2

= 2x( x2 + 3y2 )

a: \(x^4+25x^2+20x-4\)

\(=x^4-5x^3+2x^2+5x^3-25x^2+10x-2x^2+10x-4\)

\(=x^2\left(x^2-5x+2\right)+5x\left(x^2-5x+2\right)-2\left(x^2-5x+2\right)\)

\(=\left(x^2-5x+2\right)\left(x^2+5x-2\right)\)

b: \(=x^4-6x^2-x^2+9\)

\(=\left(x^2-3\right)^2-x^2\)

\(=\left(x^2-x-3\right)\left(x^2+x-3\right)\)

c: \(=abx^2+aby^2-a^2xy-b^2xy\)

\(=\left(abx^2-b^2xy\right)+\left(aby^2-a^2xy\right)\)

\(=xb\left(ax-by\right)+ay\left(by-ax\right)\)

\(=\left(ax-by\right)\cdot\left(xb-ay\right)\)