Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có: x3 - x2 - 4
= (x3 - 1) - (x2 - 2x + 1) - 2(x + 1)
= (x - 1)(x2 + x + 1) - (x - 1)2 - 2(x + 1)
= (x - 1)(x2 + x + 1 - x + 1 - 2)
= x2(x - 1)
x3 - x2 - 4
= x3 + x2 - 2x2 - 4
= (x3 - 2x2) + (x2 - 4)
= x2 (x - 2) - (x2 - 22)
= x2 (x - 2) - (x + 2) (x - 2)
= (x - 2) [x2 + (x + 2)]
= (x - 2) (x2 + x + 2)
#Học tốt!!!
~NTTH~
= (x^4-4x^3)+(3x^3-12x^2)+(2x^2-8x)-(2x-8)
= x^3.(x-4)+3x^2.(x-4)+2x.(x-4)-2.(x-4)
= (x-4).(x^3+3x^2+2x-2)
Tk mk nha
x^4-x^3-x^2+2x-2
=(x^4-x^3)-(x^2-2x+2)
=x^3(x-1)-(x-1)^2
=(x^3-x-1)*(x-1)
\(x^4+x^3+x^2-1\)
\(=x^3\left(x+1\right)+\left(x+1\right)\left(x-1\right)\)
\(=\left(x+1\right)\left(x^3+\left(x-1\right)\right)\)
Ủng hộ nha ^ _ ^
\(x^4+x^3+x^2-1\)
\(=x^2\left(x^2-1\right)+x^2-1\)
\(=\left(x^2+1\right)\left(x^2-1\right)\)
Ta có : \(x^4+x^3+2x^2+x+1\)
\(=x^4+x^3+x^2+x^2+x+1\)
\(=x^2\left(x^2+x+1\right)+\left(x^2+x+1\right)\)
\(=\left(x^2+x+1\right)\left(x^2+1\right)\)
x4 + 2x3 + x2 - y2
= ( x4 + 2x3 + x2 ) - y2
= [ ( x2 )2 + 2.x2.x + x2 ] - y2
= ( x2 + x )2 - y2
= ( x2 + x - y )( x2 + x + y )
\(=x^2\left(x^2+2x+1\right)-y^2\)
\(=x^2\left(x+1\right)^2-y^2\)
\(=x^2\left(x+1-y\right)\left(x+1+y\right)\)
\(x^5+x^4-x^3+x^2-x+2\)
\(=x^5-x^4+x^3-x^2+x+2x^4-2x^3+2x^2-2x+2\)
\(=x\left(x^4-x^3+x^2-x+1\right)+2\left(x^4-x^3+x^2-x+1\right)\)
\(=\left(x+2\right)\left(x^4-x^3+x^2-x+1\right)\)
\(x^5+x^4-x^3+x^2-x+2\)
\(=x^5+2x^4-x^4+2x^3-x^3+2x^2-x^2+2x-x+2\)
\(=x^4\left(x-2\right)-x^3\left(x-2\right)-x^2\left(x-2\right)-x\left(x-2\right)-\left(x-2\right)\)
\(=\left(x-2\right)\left(x^4-x^3-x^2-x-1\right)\)
\(=\left(x+2\right)\left(x^2+x-2\right)\)