K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

\(x^4+x^3+x^2-1\)

\(=x^3\left(x+1\right)+\left(x+1\right)\left(x-1\right)\)

\(=\left(x+1\right)\left(x^3+\left(x-1\right)\right)\)

Ủng hộ nha ^ _ ^

2 tháng 8 2016

\(x^4+x^3+x^2-1\)

\(=x^2\left(x^2-1\right)+x^2-1\)

\(=\left(x^2+1\right)\left(x^2-1\right)\)

13 tháng 11 2016

a) nhận xét hệ số : 1 + 4 - 29 + 24 = 0

=> x3 + 4x2 - 29x + 24 = x2(x-1) + 5x(x-1) - 24(x-1)

= (x-1)(x2+5x-24) = (x-1)(x-3)(x+8)

b) ...

13 tháng 11 2016

a) \(x^3+4x^2-29x+24\)=\(\left(x+8\right)\left(x^2-4x+3\right)\)=\(\left(x+8\right)\left(x^2-x-3x+3\right)\)=\(\left(x+8\right)\left(x-1\right)\left(x-3\right)\)

b) \(x^4+6x^3+7x^2-6x+1\)=\(x^4+3x^3-x^2+3x^3+9x^2-3x-x^2-3x+1\)=\(x^2\left(x^2+3x-1\right)+3x\left(x^2+3x-1\right)-\left(x^2+3x-1\right)\)=\(\left(x^2+3x-1\right)\left(x^2+3x-1\right)\)=\(\left(x^2+3x-1\right)^2\)

24 tháng 8 2015

x2-4+(x-2)2=(x+2)(x-2)+(x-2)(x-2)=(x-2)(x+2+x-2)=(x-2).2x

26 tháng 8 2021

Trả lời:

1) sửa đề:  \(x^4+x^3-4x-4=x^3\left(x+1\right)-4\left(x+1\right)=\left(x+1\right)\left(x^3-4\right)\)

2) \(x^2-\left(a+b\right)x+ab=x^2-ax-bx+ab=\left(x^2-ax\right)-\left(bx-ab\right)\)

\(=x\left(x-a\right)-b\left(x-a\right)=\left(x-a\right)\left(a-b\right)\)

3)  \(5xy^3-2xyz-15y^2+6z=\left(5xy^3-15y^2\right)-\left(2xyz-6z\right)\)

\(=5y^2\left(xy-3\right)-2z\left(xy-3\right)=\left(xy-3\right)\left(5y^2-2z\right)\)

25 tháng 10 2017

Ta có : \(x^4+x^3+2x^2+x+1\)

\(=x^4+x^3+x^2+x^2+x+1\)

\(=x^2\left(x^2+x+1\right)+\left(x^2+x+1\right)\)

\(=\left(x^2+x+1\right)\left(x^2+1\right)\)

13 tháng 7 2016

x8 + x +1=  x +x7 - x+ x6 - x6 + x5 - x5 + x4 -x4 +x-x3 + x2 -x +x +1 

             =   (x2+x+1)*(x-x5+x3-x2+1)

13 tháng 7 2016

x-x8+1+=121Vay X=112

7 tháng 4 2019

Đa thức có dạng  \(x^{3a+1}+x^{3b+2}+1\)  thì đưa về dạng  \(\left(x^2+x+1\right)\cdot P\left(x\right)\) bạn nhé!

Bài làm:

\(x^5+x+1\)

\(=\left(x^5-x^2\right)+\left(x^2+x+1\right)\)

\(=x^2\left(x^3-1^3\right)+\left(x^2+x+1\right)\)

\(=x^2\left(x-1\right)\left(x^2+x+1\right)+\left(x^2+x+1\right)\)

\(=\left(x^2+x+1\right)\left(x^3-x^2+1\right)\)

\(x^5+x+1=x^5-x^2+x^2+x+1\)

\(=x^2\left(x^3-1\right)+x^2+x+1\)

\(=x^2\left(x-1\right)\left(x^2+x+1\right)+\left(x^2+x+1\right)\)

\(=\left(x^2+x+1\right)\left(x^2\left(x-1\right)+1\right)\)

24 tháng 8 2019

\(x^2-x-2001.2002\)

\(x^2+2001x-2002x-2001.2002\)

\(x\left(x+2001\right)-2002\left(x+2001\right)\)

\(\left(x+2001\right)\left(x-2002\right)\)

9 tháng 10 2016

\(6x^3+x^2-2x\)

=>\(x\left(6x^2+x-2\right)\)