Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
mấy cái này chỉ cần dùng hằng đẳng thức thui mà ..tự lm nha
\(x^2-2x-4y^2-4y\)
\(=\left(x^2-4y^2\right)-\left(2x+4y\right)\)
\(=\left(x-2y\right)\left(x+2y\right)-2\left(x+2y\right)\)
\(=\left(x+2y\right)\left(x-2y-2\right)\)
\begin{array}{l} a){\left( {ab - 1} \right)^2} + {\left( {a + b} \right)^2}\\ = {a^2}{b^2} - 2ab + 1 + {a^2} + 2ab + {b^2}\\ = {a^2}{b^2} + 1 + {a^2} + {b^2}\\ = {a^2}\left( {{b^2} + 1} \right) + \left( {{b^2} + 1} \right)\\ = \left( {{a^2} + 1} \right)\left( {{b^2} + 1} \right)\\ c){x^3} - 4{x^2} + 12x - 27\\ = {x^3} - 27 + \left( { - 4{x^2} + 12x} \right)\\ = \left( {x - 3} \right)\left( {{x^2} + 3x + 9} \right) - 4x\left( {x - 3} \right)\\ = \left( {x - 3} \right)\left( {{x^2} + 3x + 9 - 4x} \right)\\ = \left( {x - 3} \right)\left( {{x^2} - x + 9} \right)\\ b){x^3} + 2{x^2} + 2x + 1\\ = {x^3} + 2{x^2} + x + x + 1\\ = x\left( {{x^2} + 2x + 1} \right) + \left( {x + 1} \right)\\ = x{\left( {x + 1} \right)^2} + \left( {x + 1} \right)\\ = \left( {x + 1} \right)\left( {x\left( {x + 1} \right) + 1} \right)\\ = \left( {x + 1} \right)\left( {{x^2} + x + 1} \right)\\ d){x^4} - 2{x^3} + 2x - 1\\ = {x^4} - 2{x^3} + {x^2} - {x^2} + 2x - 1\\ = {x^2}\left( {{x^2} - 2x + 1} \right) - \left( {{x^2} - 2x + 1} \right)\\ = \left( {{x^2} - 2x + 1} \right)\left( {{x^2} - 1} \right)\\ = {\left( {x - 1} \right)^2}\left( {x - 1} \right)\left( {x + 1} \right)\\ = {\left( {x - 1} \right)^3}\left( {x + 1} \right)\\ e){x^4} + 2{x^3} + 2{x^2} + 2x + 1\\ = {x^4} + 2{x^3} + {x^2} + {x^2} + 2x + 1\\ = {x^2}\left( {{x^2} + 2x + 1} \right) + \left( {{x^2} + 2x + 1} \right)\\ = \left( {{x^2} + 2x + 1} \right)\left( {{x^2} + 1} \right)\\ = {\left( {x + 1} \right)^2}\left( {{x^2} + 1} \right) \end{array} |
a) \(x^4-2x^3+2x-1\)
\(=x^4-x^3-x^3+2x-2+1\)
\(=\left(x^4-x^3\right)+\left(2x-2\right)-\left(x^3-1\right)\)
\(=x^3\left(x-1\right)+2\left(x-1\right)-\left(x-1\right)\left(x^2+x+1\right)\)
\(=\left(x-1\right)\left(x^3+2-x^2-x-1\right)\)
\(=\left(x-1\right)\left(x^3-x^2-x+1\right)\)
\(=\left(x-1\right)\left[\left(x^3-x^2\right)-\left(x-1\right)\right]\)
\(=\left(x-1\right)\left[x^2\left(x-1\right)-\left(x-1\right)\right]\)
\(=\left(x-1\right)\left(x^2-1\right)\left(x-1\right)\)
\(=\left(x-1\right)^2\left(x-1\right)\left(x+1\right)\)
\(=\left(x-1\right)^3\left(x+1\right)\)
b) \(x^4+2x^3+2x^2+2x+1\)
\(=\left(x^4+2x^2+1\right)+\left(2x^3+2x\right)\)
\(=\left(x^2+1\right)^2+2x\left(x^2+1\right)\)
\(=\left(x^2+1\right)\left(x^2+1+2x\right)\)
\(=\left(x^2+1\right)\left(x+1\right)^2\)
a, \(x^4-x^3-x^3+x^2-x^2+x+x-1\)\(1\)
=\(x^3\left(x-1\right)+x^2\left(x-1\right)-x\left(x-1\right)+\left(x-1\right)\)
=\(\left(x-1\right)\left(x^3+x^2-x+1\right)\)
b, \(\left(ab-1\right)^2+\left(a+b\right)^2\)
=\(a^2b^2-2ab+1+a^2+2ab+b^2\)
=\(a^2b^2+a^2+b^2+1\)
=\(a^2\left(b^2+1\right)+\left(b^2+1\right)\)
=\(\left(b^2+1\right)\left(a^2+1\right)\)
c,\(x^4+2x^3+2x^2+2x+1\)
=\(x^4+x^3+x^3+x^2+x^2+x+x+1\)
=\(x^3\left(x+1\right)+x^2\left(x+1\right)+x\left(x+1\right)+\left(x+1\right)\)
=\(\left(x+1\right)\left(x^3+x^2+x+1\right)\)
=\(\left(x+1\right)^2\left(x^2+1\right)\)
a )\(x^2-2x-4y^2-4y=\left(x^2-2x+1\right)-\left(4y^2+4y+1\right)\)
\(=\left(x-1\right)^2-\left(2y+1\right)^2=\left(x-2y-2\right)\left(x+2y\right)\)
b )\(x^4+2x^3-4x-4=\left(x^4+2x^3+x^2\right)-\left(x^2+4x+4\right)\)
\(=\left(x^2+x\right)^2-\left(x+2\right)^2=\left(x^2+2x+2\right)\left(x^2-2\right)\)
c ) \(x^2\left(1-x^2\right)-4-4x^2=x^2-x^4-4-4x^2\)
\(=x^2-\left(x^2+2\right)^2=\left(x-x^2-2\right)\left(x^2+x+2\right)\)
câu a đặt chung x ra là xong
câu b
x^3 + 3x^2 - 7x^2 - 21x + 9x+ 27 còn lại tự làm nhé
a) x3 - 2x2 + x - xy2
= x (x2 - 2x + 1 - y2)
= x [(x2 - 2x + 1) - y2]
= x [(x - 1)2 - y2]
= x [(x - 1) + y] [(x - 1) - y]
= x (x - 1 + y) (x - 1 - y)
b) x3 - 4x2 - 12x + 27
= (x3 + 27) - (4x2 + 12x)
= (x3 + 33) - 4x (x + 3)
= (x + 3) (x2 - 3x + 32) - 4x (x + 3)
= (x + 3) [(x2 - 3x + 9) - 4x]
= (x + 3) (x2 - 3x + 9 - 4x)
= (x + 3) (x2 - 7x + 9)
#Học tôt!!!
~NTTH~
\(x^3+2x^2+2x+1=\left(x^3+1\right)+\left(2x^2+2x\right)\)
\(=\left(x+1\right)\left(x^2-x+1\right)+2x\left(x+1\right)\)
\(=\left(x+1\right)\left(x^2-x+1+2x\right)=\left(x+1\right)\left(x^2+x+1\right)\)
\(x^3-4x^2+12x-27=x^3-3x^2-x^2+3x+9x-27\)
\(=x^2\left(x-3\right)-x\left(x-3\right)+9\left(x-3\right)\)
\(=\left(x-3\right)\left(x^2-x+9\right)\)
\(x^4+2x^3+2x^2+2x+1=x^4+x^2+2x^3+x^2+2x+1\)
\(=x^2\left(x^2+1\right)+2x\left(x^2+1\right)+\left(x^2+1\right)\)
\(=\left(x^2+1\right)\left(x^2+2x+1\right)\)
\(=\left(x^2+1\right)\left(x+1\right)^2\)
\(x^4-2x^3+2x-1=\left(x^4-1\right)-2x\left(x^2-1\right)\)
\(=\left(x^2-1\right)\left(x^2+1\right)-2x\left(x^2-1\right)\)
\(=\left(x^2-1\right)\left(x^2+1-2x\right)=\left(x^2-1\right)\left(x-1\right)^2\)
\(x^3+2x^2+2x+1=\left(x^3+x^2\right)+\left(x^2+x\right)+\left(x+1\right)\)
\(=x^2.\left(x+1\right)+x.\left(x+1\right)+\left(x+1\right)\)
\(=\left(x+1\right).\left(x^2+x+1\right)\)
\(x^3-4x^2+12x-27\)
\(=\left(x^3-x^2\right)-\left(3x^2-3x\right)+\left(9x-27\right)\)
\(=x^2.\left(x-1\right)-3x.\left(x-1\right)+9.\left(x-3\right)\)
\(=\left(x-1\right).\left(x^2-3x\right)+9.\left(x-3\right)\)
\(=x.\left(x-1\right).\left(x-3\right)+9.\left(x-3\right)\)
\(=\left(x-3\right)\left[x.\left(x-1\right)+9\right]\)