Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Đặt 2x-2013=a; 2013-3y=b
Theo đề, ta có: \(a^3+b^3-\left(a+b\right)^3\)
\(=\left(a+b\right)^3-3ab\left(a+b\right)-\left(a+b\right)^3\)
\(=-3ab\left(a+b\right)\)
\(=-3\left(2x-2013\right)\left(2013-3y\right)\left(2x-3y\right)\)
\(\left(2x-y\right)\left(x-y\right)-\left(3y-4x\right)^2+\left(y-2x\right)\left(2y-3x\right)\)
=(2x-y)(x-y)-(2x-y)(2y-3x)-(4x-3y)2
=(2x-3y)(x-y-2y+3x)-(4x-3y)2
=(2x-3y)(4x-3y)-(4x-3y)2
=(4x-3y)(2x-3y-4x+3y)
=(4x-3y))(-2x)
3*(\(4x^2-4xy+y^2\))-10(2x-y)+8
3*(2x-y)^2-10(2x-y)+8
3*(2x-y)^2-6(2x-y)-4(2x-y)+8
3(2x-y)(2x-y-2)-4(2x-y-2)
(2x-y-2)(6x-3y-40
\(\left(12x^2-12xy+3y^2\right)-10\left(2x-y\right)+8\)
\(=\left(12x^2-6xy-6xy+3y^2\right)-10\left(2x-y\right)+8\)
\(=\left[6x\left(2x-y\right)-3y\left(2x-y\right)\right]-10\left(2x-y\right)+8\)
\(=\left(2x-y\right)\left(6x-3y\right)-10\left(2x-y\right)+8\)
\(=3\left(2x-y\right)^2-10\left(2x-y\right)+8\)
Đặt \(2x-y=a\), khi đó biểu thức có dạng:
\(3a^2-10a+8=3a^2-6a-4a+8\)
\(=3a\left(a-2\right)-4\left(a-2\right)=\left(a-2\right)\left(3a-4\right)\)
\(=\left(2x-y-2\right)\left(6x-3y-4\right).\)
a/Dùng hằng đẳng thức A2-B2=(A+B)(A-B) phân tích được ngay
\(\left(x-y+4\right)^2-\left(2x+3y-1\right)^2\)
\(=\left(x-y+4+2x+3y-1\right)\left(x-y+4-2x-3y+1\right)\)
=\(\left(3x-2y+3\right)\left(4-x-4y\right)\)
b/Chắc chỉ phân tích hằng đẳng thức (A-B)2=A2-2ab+B2
\(49\left(y-4\right)^2-9y^2-3y-36=49y^2-392y+784-9y^2-3y-36\)
\(=40y^2-395y+748\)
Mình dùng biệt thức cho ra nghiệm vô tỉ, không biết cho phải tại mình tính sai hay đề thiếu nữa
c/Khai triển biểu thức ban đầu ta được
\(x\left(x-y\right)+y\left(y-x\right)=x^2-xy+y^2-xy=x^2-2xy+y^2=\left(x-y\right)^2\)
=8x3y + z3y + 8x3z -2xz3 - y3(z +2x)= y(8x3+z3) +2xz(4x2-z2) - y3(2x+z) = y(2x+z)(4x2 - 2xz + z2) +2xz(2x+z)(2x-z) - y3(2x+z)
=(2x+z)(4x2y -2xyz + z2y + 4x2z -2xz2 - y3) = (2x+z)( 4x2y+ 4x2z - 2xyx- 2xz2 +z2y - y3) = (2x+z)[ 4x2(y+z) -2xz(y+z) + y(z+y)(z-y)]
= (2x+z)(y+z)( 4x2- 2xz +yz- y2) = (2x+z)(y+z)(4x2 - y2 -2xz + yz) = (2x+z)(y+z)[(2x-y)(2x+y) - z(2x-y)]
= (2x+y)(y+z)(2x-y)(2x+y-z)
a) \(A=x^2-2xy+y^2+3x-3y-4\)
\(=\left(x-y\right)^2-1+3x-3y-3\)
\(=\left(x-y-1\right)\left(x-y+1\right)+3\left(x-y-1\right)\)
\(=\left(x-y-1\right)\left(x-y+1+3\right)\)
\(=\left(x-y-1\right)\left(x-y+4\right)\)
\(\left(2x-2013\right)^3+\left(2013-3y\right)^3+\left(3y-2x\right)^3.\)
\(=\left(2x-2013+2013-3y\right)\left[\left(2x-2013\right)^2-\left(2x-2013\right).\left(2013-3y\right)+\left(2013-3y\right)^2\right]+\left(3y-2x\right)^3\)
\(=\left(2x-3y\right).\left(4x^2-8042x+2013^2-4026x+6xy+2013^2-6039y+2013^2-12078y+9y^2\right)+\left(3y-2x\right)^3.\)
\(=\left(2x-3y\right).\left(4x^2+9y^2-12078x-18117y+6xy+3.2013^2\right)-\left(2x-3y\right)^3.\)
\(=\left(2x-3y\right).\left[4x^2+9y^2-12078x-18117y+6xy+3.2013^2-\left(2x-3y\right)^2\right]\)
\(=\left(2x-3y\right).\left(4x^2+9y^2-12078x-18117y+6xy+3.2013^2-4x^2+12xy-9y^2\right).\)
\(=\left(2x-3y\right).\left(-12078x-18117y+18xy+3.2013^2\right).\)
\(=\left(2x-3y\right).9.\left(-1342x-2013y+2xy+1350723\right).\)
\(=9.\left(2x-3y\right).\left[\left(-1342x+2xy\right)+\left(1350723-2013y\right)\right]\)
\(=9.\left(2x-3y\right).\left[-2x\left(671-y\right)+2013\left(671-y\right)\right]\)
\(=9.\left(2x-3y\right).\left(-2x+2013\right)\left(671-y\right)\)