Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
x2 + 4x + y - 9y2
<=> x(x + 4) + y(1 + 9y)
<=> (x + y)(x + 4 + 1 + 9y)
<=> (x + y)(x + 9y + 5)
bí rồi
1) Phân tích đa thức thành nhân tử
a) \(x^2+2x+1-y^2\)
b) \(x^2+4x+3\)
c) \(4x^2-9y^2\)
d) \(x^3-27y^3\)
a) \(x^2+2x+1-y^2=\left(x+1\right)^2-y^2=\left(x+1-y\right)\left(x+1+y\right)\)
b) \(x^2+4x+3=x^2+4x+4-1=\left(x+2\right)^2-1=\left(x+1\right)\left(x+3\right)\)
c) \(4x^2-9y^2=\left(4x-9y\right)\left(4x+9y\right)\)
d) \(x^3-27y^3=\left(x-3y\right)\left(x^2+3xy+9y^2\right)\)
a)\(x^2+2x+1-y^2=\left(x+1\right)^2-y^2=\left(x+y-1\right)\left(x-y+1\right)\)
b)\(x^2+4x+3=\left(x+1\right)\left(x+3\right)\)
c)\(4x^2-9y^2=\left(2x-3y\right)\left(2x+3y\right)\)
d)\(x^3-27y^3=\left(x-3y\right)\left(x^2+3xy+9y^2\right)\)
a) \(\Leftrightarrow\left(2x\right)^2+2.2x.1+1-y^2\Leftrightarrow\left(2x+1\right)^2-y^2\Leftrightarrow\left(2x-1-y\right)\left(2x-1+y\right)\)
b)\(\Leftrightarrow\left(x+y\right)\left(x^2-xy+y^2\right)-\left(x+y\right)\Leftrightarrow\left(x+y\right)\left(x^2-xy+y^2-1\right)\)
T I C K cho mình nha cảm ơn
\(x^3+4x^2+4x+3\)
\(=x^3+3x^2+x^2+3x+x+3\)
\(=x^2\left(x+3\right)+x\left(x+3\right)+\left(x+3\right)\)
\(=\left(x+3\right)\left(x^2+x+1\right)\)
\(x^2-y^2+4y-4\)
\(=x^2-\left(y^2-4y+4\right)\)
\(=x^2-\left(y-2\right)^2\)
\(=\left(x-y+2\right)\left(x+y-2\right)\)
\(x^4+x^3y-xy^3-y^4\)
\(=x^3\left(x+y\right)-y^3\left(x+y\right)\)
\(=\left(x+y\right)\left(x^3-y^3\right)\)
\(=\left(x+y\right)\left(x-y\right)\left(x^2+xy+y^2\right)\)
Chúc bạn học tốt.
\(x^2-y^2+3x-3y\)
\(=\left(x^2-y^2\right)+\left(3x-3y\right)\)
\(=\left(x-y\right)\left(x+y\right)+3.\left(x-y\right)\)
\(=\left(x-y\right)\left(x+y+3\right)\)
\(x^2-y^2+4x+4\)
\(=\left(x^2+2.2x+2^2\right)-y^2\)
\(=\left(x+2\right)^2-y^2\)
\(=\left(x+2-y\right)\left(x+2+y\right)\)
Tham khảo nhé~
\(x^2-y^2+4-4x\)
\(=\left(x^2-4x+4\right)-y^2\)
\(=\left(x-2\right)^2-y^2\)
\(=\left(x-2+y\right)\left(x-2-y\right)\)
1)=x(x-1)-y(y-1)
2)=(x-2)2 -y2
3)=(2x+1)2 -9y2+1
#Mình k biết viết bình phương, thông cảm bạn nhé!