K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

25 tháng 7 2018

\(x^2-y^2+3x-3y\)

\(=\left(x^2-y^2\right)+\left(3x-3y\right)\)

\(=\left(x-y\right)\left(x+y\right)+3.\left(x-y\right)\)

\(=\left(x-y\right)\left(x+y+3\right)\)

\(x^2-y^2+4x+4\)

\(=\left(x^2+2.2x+2^2\right)-y^2\)

\(=\left(x+2\right)^2-y^2\)

\(=\left(x+2-y\right)\left(x+2+y\right)\)

Tham khảo nhé~

25 tháng 7 2018

e) x2 -y+ 3x - 3y = (x-y).(x+y) + 3.(x-y) = (x-y).(3+x+y) 

g) x2 -y+ 4x + 4 = (x-y).(x+y) + 4.(x+1) =  
Câu g mình không giúp được . Xin lỗi bạn 

25 tháng 7 2018

e) x2 - y2 + 3x - 3y

= ( x - y ) ( x + y ) + 3 ( x - y )

= ( x - y ) ( x + y + 3 )

........

19 tháng 9 2020

x2 + y2 - 3x - 3y + 2xy

= ( x2 + 2xy + y2 ) - ( 3x + 3y )

= ( x + y )2 - 3( x + y )

= ( x + y )( x + y - 3 )

b) ( x2 - 4x )2 - 2( x - 2 )2 - 7 

= ( x2 - 4x )2 - 2( x2 - 4x + 4 ) - 7 (*)

Đặt t = x2 - 4x

(*) <=> t2 - 2( t + 4 ) - 7

       = t2 - 2t - 8 - 7

       = t2 - 2t - 15

       = t2 + 3t - 5t - 15

       = t( t + 3 ) - 5( t + 3 )

       = ( t + 3 )( t - 5 )

       = ( x2 - 4x + 3 )( x2 - 4x - 5 ) 

       = ( x2 - x - 3x + 3 )( x2 + x - 5x - 5 )

       = [ x( x - 1 ) - 3( x - 1 ) ][ x( x + 1 ) - 5( x + 1 ) ]

       = ( x - 1 )( x - 3 )( x + 1 )( x - 5 )

19 tháng 9 2020

a) Ta có: \(x^2+y^2-3x-3y+2xy\)

        \(=\left[\left(x^2+y^2+2xy\right)-2\left(x+y\right)+1\right]-\left(x+y+1\right)\)

        \(=\left[\left(x+y\right)^2-2\left(x+y\right)+1\right]-\left(x+y+1\right)\)

        \(=\left(x+y-1\right)^2-\left(x+y+1\right)\)

        \(=\left(x+y-1\right)^2-\left(\sqrt{x+y+1}\right)^2\)

        \(=\left(x+y-1+\sqrt{x+y+1}\right)\left(x+y-1-\sqrt{x+y+1}\right)\)

20 tháng 4 2017

Bài giải:

a) x2 + 4x – y2 + 4 = (x2 + 4x + 4) - y2

= (x + 2)2 – y2 = (x + 2 – y)(x + 2 + y)

b) 3x2 + 6xy + 3y2 – 3z2 = 3[(x2 + 2xy + y2) – z2]

= 3[(x + y)2 – z2] = 3(x + y – z)(x + y + z)

c) x2 – 2xy + y2 – z2 + 2zt – t2 = (x2 – 2xy + y2) – (z2 – 2zt + t2)

= (x – y)2 – (z – t)2

= [(x – y) – (z – t)] . [(x – y) + (z – t)]

= (x – y – z + t)(x – y + z – t)

2 tháng 6 2017

48. Phân tích các đa thức sau thành nhân tử:

a) x2 + 4x – y2 + 4; b) 3x2 + 6xy + 3y2 – 3z2;

c) x2 – 2xy + y2 – z2 + 2zt – t2.

Bài giải:

a) x2 + 4x – y2 + 4 = (x2 + 4x + 4) - y2

= (x + 2)2 – y2 = (x + 2 – y)(x + 2 + y)

b) 3x2 + 6xy + 3y2 – 3z2 = 3[(x2 + 2xy + y2) – z2]

= 3[(x + y)2 – z2] = 3(x + y – z)(x + y + z)

c) x2 – 2xy + y2 – z2 + 2zt – t2 = (x2 – 2xy + y2) – (z2 – 2zt + t2)

= (x – y)2 – (z – t)2

= [(x – y) – (z – t)] . [(x – y) + (z – t)]

= (x – y – z + t)(x – y + z – t)

22 tháng 6 2017

x4-3x3-x+3 = (x4-3x3)-(x-3) = x3(x-3)-(x-3) = (x-3)(x3-1) = (x-3)(x-1)(x2+x+1)

3x+3y-x2-2xy-y2 = (3x+3y)-(x2+2xy+y2) = 3(x+y)-(x+y)2 = (x+y)( 3-x-y)

x2-x-12 = x(x-1)-12

22 tháng 6 2017

4x4+ 4x2y2- 8y4

<=> (2x2- 2y2)

30 tháng 9 2018

      \(x^3+4x^2+4x+3\)

\(=x^3+3x^2+x^2+3x+x+3\)

\(=x^2\left(x+3\right)+x\left(x+3\right)+\left(x+3\right)\)

\(=\left(x+3\right)\left(x^2+x+1\right)\)

      \(x^2-y^2+4y-4\)

\(=x^2-\left(y^2-4y+4\right)\)

\(=x^2-\left(y-2\right)^2\)

\(=\left(x-y+2\right)\left(x+y-2\right)\)

      \(x^4+x^3y-xy^3-y^4\)

\(=x^3\left(x+y\right)-y^3\left(x+y\right)\)

\(=\left(x+y\right)\left(x^3-y^3\right)\)

\(=\left(x+y\right)\left(x-y\right)\left(x^2+xy+y^2\right)\)

Chúc bạn học tốt.

11 tháng 12 2018

\(x^2-3x+xy-3y\)

\(=x\left(x+y\right)-3\left(x+y\right)\)

\(=\left(x+y\right)\left(x-3\right)\)

\(x^2-2xy+y^2-4=\left(x-y\right)^2-2^2=\left(x-y-2\right)\left(x-y+2\right)\)

\(x^2+x-y^2+y=\left(x-y\right)\left(x+y\right)+\left(x+y\right)=\left(x+y\right)\left(x-y+1\right)\)

19 tháng 7 2019

a) \(x^2+4x-y^2+4\)

\(=\left(x+2\right)^2-y^2\)

\(=\left(x+2-y\right)\left(x+2+y\right)\)

19 tháng 7 2019

c) \(x^2-2xy+y^2-z^2+2zt-t^2\)

\(=\left(x-y\right)^2-\left(z-t\right)^2\)

\(=\left(x-y-z+t\right)\left(x-y+z-t\right)\)

29 tháng 10 2016

\(3x^2-3y^2-2\left(x-y\right)^2\)

\(=3x^2-3y^2-2\left(x^2-2xy+y^2\right)\)

\(=3x^2-3y^2-2x^2+4xy-2y^2\)

\(=x^2+4xy-5y^2\)

\(=x^2+4xy+4y^2-9y^2\)

\(=\left(x+2y\right)^2-\left(3y\right)^2\)

\(=\left(x+2y-3y\right)\left(x+2y+3y\right)\)

\(=\left(x-y\right)\left(x+5y\right)\)