Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
e) x2 -y2 + 3x - 3y = (x-y).(x+y) + 3.(x-y) = (x-y).(3+x+y)
g) x2 -y2 + 4x + 4 = (x-y).(x+y) + 4.(x+1) =
Câu g mình không giúp được . Xin lỗi bạn
e) x2 - y2 + 3x - 3y
= ( x - y ) ( x + y ) + 3 ( x - y )
= ( x - y ) ( x + y + 3 )
........
x2 + y2 - 3x - 3y + 2xy
= ( x2 + 2xy + y2 ) - ( 3x + 3y )
= ( x + y )2 - 3( x + y )
= ( x + y )( x + y - 3 )
b) ( x2 - 4x )2 - 2( x - 2 )2 - 7
= ( x2 - 4x )2 - 2( x2 - 4x + 4 ) - 7 (*)
Đặt t = x2 - 4x
(*) <=> t2 - 2( t + 4 ) - 7
= t2 - 2t - 8 - 7
= t2 - 2t - 15
= t2 + 3t - 5t - 15
= t( t + 3 ) - 5( t + 3 )
= ( t + 3 )( t - 5 )
= ( x2 - 4x + 3 )( x2 - 4x - 5 )
= ( x2 - x - 3x + 3 )( x2 + x - 5x - 5 )
= [ x( x - 1 ) - 3( x - 1 ) ][ x( x + 1 ) - 5( x + 1 ) ]
= ( x - 1 )( x - 3 )( x + 1 )( x - 5 )
a) Ta có: \(x^2+y^2-3x-3y+2xy\)
\(=\left[\left(x^2+y^2+2xy\right)-2\left(x+y\right)+1\right]-\left(x+y+1\right)\)
\(=\left[\left(x+y\right)^2-2\left(x+y\right)+1\right]-\left(x+y+1\right)\)
\(=\left(x+y-1\right)^2-\left(x+y+1\right)\)
\(=\left(x+y-1\right)^2-\left(\sqrt{x+y+1}\right)^2\)
\(=\left(x+y-1+\sqrt{x+y+1}\right)\left(x+y-1-\sqrt{x+y+1}\right)\)
Bài giải:
a) x2 + 4x – y2 + 4 = (x2 + 4x + 4) - y2
= (x + 2)2 – y2 = (x + 2 – y)(x + 2 + y)
b) 3x2 + 6xy + 3y2 – 3z2 = 3[(x2 + 2xy + y2) – z2]
= 3[(x + y)2 – z2] = 3(x + y – z)(x + y + z)
c) x2 – 2xy + y2 – z2 + 2zt – t2 = (x2 – 2xy + y2) – (z2 – 2zt + t2)
= (x – y)2 – (z – t)2
= [(x – y) – (z – t)] . [(x – y) + (z – t)]
= (x – y – z + t)(x – y + z – t)
48. Phân tích các đa thức sau thành nhân tử:
a) x2 + 4x – y2 + 4; b) 3x2 + 6xy + 3y2 – 3z2;
c) x2 – 2xy + y2 – z2 + 2zt – t2.
Bài giải:
a) x2 + 4x – y2 + 4 = (x2 + 4x + 4) - y2
= (x + 2)2 – y2 = (x + 2 – y)(x + 2 + y)
b) 3x2 + 6xy + 3y2 – 3z2 = 3[(x2 + 2xy + y2) – z2]
= 3[(x + y)2 – z2] = 3(x + y – z)(x + y + z)
c) x2 – 2xy + y2 – z2 + 2zt – t2 = (x2 – 2xy + y2) – (z2 – 2zt + t2)
= (x – y)2 – (z – t)2
= [(x – y) – (z – t)] . [(x – y) + (z – t)]
= (x – y – z + t)(x – y + z – t)
x4-3x3-x+3 = (x4-3x3)-(x-3) = x3(x-3)-(x-3) = (x-3)(x3-1) = (x-3)(x-1)(x2+x+1)
3x+3y-x2-2xy-y2 = (3x+3y)-(x2+2xy+y2) = 3(x+y)-(x+y)2 = (x+y)( 3-x-y)
x2-x-12 = x(x-1)-12
\(x^3+4x^2+4x+3\)
\(=x^3+3x^2+x^2+3x+x+3\)
\(=x^2\left(x+3\right)+x\left(x+3\right)+\left(x+3\right)\)
\(=\left(x+3\right)\left(x^2+x+1\right)\)
\(x^2-y^2+4y-4\)
\(=x^2-\left(y^2-4y+4\right)\)
\(=x^2-\left(y-2\right)^2\)
\(=\left(x-y+2\right)\left(x+y-2\right)\)
\(x^4+x^3y-xy^3-y^4\)
\(=x^3\left(x+y\right)-y^3\left(x+y\right)\)
\(=\left(x+y\right)\left(x^3-y^3\right)\)
\(=\left(x+y\right)\left(x-y\right)\left(x^2+xy+y^2\right)\)
Chúc bạn học tốt.
\(x^2-3x+xy-3y\)
\(=x\left(x+y\right)-3\left(x+y\right)\)
\(=\left(x+y\right)\left(x-3\right)\)
\(x^2-2xy+y^2-4=\left(x-y\right)^2-2^2=\left(x-y-2\right)\left(x-y+2\right)\)
\(x^2+x-y^2+y=\left(x-y\right)\left(x+y\right)+\left(x+y\right)=\left(x+y\right)\left(x-y+1\right)\)
a) \(x^2+4x-y^2+4\)
\(=\left(x+2\right)^2-y^2\)
\(=\left(x+2-y\right)\left(x+2+y\right)\)
c) \(x^2-2xy+y^2-z^2+2zt-t^2\)
\(=\left(x-y\right)^2-\left(z-t\right)^2\)
\(=\left(x-y-z+t\right)\left(x-y+z-t\right)\)
\(3x^2-3y^2-2\left(x-y\right)^2\)
\(=3x^2-3y^2-2\left(x^2-2xy+y^2\right)\)
\(=3x^2-3y^2-2x^2+4xy-2y^2\)
\(=x^2+4xy-5y^2\)
\(=x^2+4xy+4y^2-9y^2\)
\(=\left(x+2y\right)^2-\left(3y\right)^2\)
\(=\left(x+2y-3y\right)\left(x+2y+3y\right)\)
\(=\left(x-y\right)\left(x+5y\right)\)
\(x^2-y^2+3x-3y\)
\(=\left(x^2-y^2\right)+\left(3x-3y\right)\)
\(=\left(x-y\right)\left(x+y\right)+3.\left(x-y\right)\)
\(=\left(x-y\right)\left(x+y+3\right)\)
\(x^2-y^2+4x+4\)
\(=\left(x^2+2.2x+2^2\right)-y^2\)
\(=\left(x+2\right)^2-y^2\)
\(=\left(x+2-y\right)\left(x+2+y\right)\)
Tham khảo nhé~