Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Đặt \(x+y=u\)
Biểu thức trở thành \(u^2-8u+12\)
\(=u^2-2u-6u+12\)
\(=u\left(u-2\right)-6\left(u-2\right)\)
\(=\left(u-6\right)\left(u-2\right)\)
Thay ngược trở lại, ta được:
\(\left(x+y\right)^2-8\left(x+y\right)+12=\left(x+y-6\right)\left(x+y-2\right)\)
\(x^3+2x^2-2x-12=x^3-2x^2+4x^2-8x+6x-12\)
\(=x^2\left(x-2\right)+4x\left(x-2\right)+6\left(x-2\right)=\left(x-2\right)\left(x^2+4x+6\right)\)
\(x^3+2x^2-2x-12\)
\(=x^3-2x^2+4x^2-8x+6x-12\)
\(=x^2\left(x-2\right)+4x\left(x-2\right)+6\left(x-2\right)\)
\(=\left(x-2\right)\left(x^2+4x+6\right)\)
hk tốt
^^
(x^2+1)^2 - 4x(1-x^2)
=(x^2-1)^2 + 4x^2 + 4x(x^2-1)
(=(x^2-1+2x)^2
=((x-1)^2)^2
=(x-1)^4
\(\left(x^3-2x^2\right)-\left(4x^2-8x\right)+\left(x-2\right).\)
\(x^2\left(x-2\right)-4x\left(x-2\right)+\left(x-2\right)\)
vậy................
\(\left(x^3-2x^2\right)-\left(4x^2-8x\right)+\left(x-2\right)\)
\(x^2\left(x-2\right)-4x\left(x-2\right)+\left(x-2\right)\)
Vậy ........
\(x^2-y^2+8x+6y+7\)
\(=\left(x-y\right)\left(x+y\right)+7\left(x+y\right)+x-y+7\)
\(=\left(x+y\right)\left(x-y+7\right)+\left(x-y+7\right)\)
\(=\left(x+y+1\right)\left(x-y+7\right)\)
\(x^2+x-6=x^2-2x+3x-6=x\left(x-2\right)+3\left(x-2\right)=\left(x-2\right)\left(x+3\right)\)
x2 + x - 6
= x2 - 2x + 3x - 6
= x ( x - 2 ) + 3 ( x - 2 )
= ( x - 2 ) ( x + 3 )
\(x^2+2xy+7x+7y+y^{2+10}\)
\(\text{phân tích đa thức thành nhân tử}\)
\(y^{12}+2xy+7y+x^2+7x\)
tách \(^{x^2}\)ra rồi làm thừa số chung, toán SGK đem ra hỏi làm j
\(x^2-y^2\)
\(=x^2+xy-xy-y^2\)
\(=x\left(x+y\right)-y\left(x+y\right)\)
\(=\left(x+y\right)\left(x-y\right)\)
x3-x2+x+3=x3+1-x2+1+x+1
=(x+1)(x2+x+1)-(x2-1)+(x+1)
=(x+1)(x2+x+1)-(x+1)(x-1)+(x+1)
=(x+1)[(x2+x+1)-(x-1)+1]
=(x+1)(x2+x+1-x+1+1)
=(x+1)(x2+3)