K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

6 tháng 9 2017

a)\(x^4+x^3+x+1=x^3\left(x+1\right)+\left(x+1\right)=\left(x+1\right)\left(x^3+1\right)=\left(x+1\right)^2\left(x^2-x+1\right)\)

b)\(x^4-x^3-x^2+1=\left(x^4-x^3\right)-\left(x^2-1\right)=x^3\left(x-1\right)-\left(x-1\right)\left(x+1\right)\)

\(=\left(x-1\right)\left(x^3-x-1\right)\)

c)\(x^2y+xy^2-x-y=xy\left(x+y\right)-\left(x+y\right)=\left(xy-1\right)\left(x+y\right)\)

Đây là cách hiện đại :

 \(x^4-2x^3+2x-1\)

\(=\left(x^4-1\right)-\left(2x^3-2x\right)\)

\(=\left(x^2-1\right)\left(x^2+1\right)-2x\left(x^2-1\right)\)

\(=\left(x^2-1\right)\left(\left(x^2+1\right)-2x\right)\)

\(=\left(x+1\right)\left(x-1\right)\left(\left(x^2+1\right)-2x\right)\)

7 tháng 8 2016

a,=\(x^4-x^3-x^3+x^2-x^2+x+x-1\)

cu hai so nhom 1 nhom roi  dat thua so chung la xong

b,x^4+x^3+x^3+x^2+x^2+x+x+1

cu hai so lai nhom 1 nhom va dat thua so chung

26 tháng 11 2019

 1a) 8xy(8-12x+6x*x-x*x*x)

 chú thích   x*x là x bình phương

                 x*x*x là x lập phương

2. a) 3x (x-5)- (x-1)(2+3x)=30

      3x*x-15x-2x-3x*x+2+3x=30

           14x=28

           x=2 

  b) (x+2)(x-3)-(x-2)(x+5)=0

     x*x-3x+2x-6-x*x-5x+2x+10=0

       2x=-4

       x=-2

  còn mấy  bài còn lại mình không biết

     

8 tháng 7 2017

a)x(x+1)\(^2\)

b)(y-1)(x+y)

8 tháng 7 2017

Ta có : x3 + 2x2 + x 

= x3 + x2 + x2 + x

= x2(x + 1) + x(x + 1)

= (x2 + x) (x + 1)

= x(x + 1)(x + 1)

20 tháng 9 2015

a/ (x-a)^4 - (x+a)^4

    =((x-a)^2)^2 - ((x+a)^2)^2

    =(x^2 - 2xa + a^2)^2 - (x^2 +2xa+a^2)^2

    =(x^2-2xa+a^2-x^2-2xa-a^2)(x^2-2xa+a^2+x^2+2xa+a^2)

    =-4xa(2x^2+2a^2)

 

b/ x^4 –y^2(2x-y)^2

    =(x^2)^2-(y(2x-y)^2

    =(x^2)^2-(2xy-y^2)^2

    =(x^2-2xy+y^2)(x^2+2xy+y^2)

    =(x-y)^2 (x+y)^2

 

c/(xy+4)^2- 4(x+y)^2

    =(xy+4)^2- (2x+2y)^2

    =(xy+y-2x-2y)(xy+y+2x+2y)

    =(xy-y+2x)(xy+3y+2x)

20 tháng 9 2015

sử dụng tam giác  Pascal

30 tháng 4 2017

 1)    \(25x^4-10x^2y+y^2\)

\(\Leftrightarrow\left(5x^2\right)^2+2\cdot\left(5x^2\right)\cdot y+y^2\)

\(\Leftrightarrow\left(5x^2+y\right)^2\)

 2)   \(x^4+2x^3-4x-4\)

\(\Leftrightarrow\left(x^4-4\right)+\left(2x^3-4x\right)\Leftrightarrow\left(x^2-2\right)\left(x^2+2\right)+2x\left(x^2-2\right)\)

 \(\Leftrightarrow\left(x^2-2\right)\left(x^2+2+2x\right)\)

 3)  \(x^4+x^2+1\)

\(\Leftrightarrow x^4+x^2-x+x+1\)

 \(\Leftrightarrow\left(x^4-x\right)+\left(x^2+x+1\right)\)

\(\Leftrightarrow x\left(x-1\right)\left(x^2+x+1\right)+\left(x^2+x+1\right)\)\(\Leftrightarrow\left(x^2+x+1\right)\left(x^2-x+1\right)\)

 4)    \(x^3-5x^2-14x\)\(\Leftrightarrow x^3-7x^2+2x^2-14x\)

\(\Leftrightarrow x^2\left(x-7\right)+2x\left(x-7\right)\)\(\Leftrightarrow x\left(x+2\right)\left(x-7\right)\)

 5)  \(x^2yz+5xyz-14yz\)\(\Leftrightarrow yz\left(x^2+5x-14\right)\)

\(\Leftrightarrow yz\left(x^2+7x-2x-14\right)\)

\(\Leftrightarrow yz\left[x\left(x+7\right)-2\left(x+7\right)\right]\) 

\(\Leftrightarrow yz\left(x+7\right)\left(x-2\right)\)

1 tháng 5 2017

Cảm ơn bạn Nguyễn Kim Thương :))

3 tháng 9 2018

\(x^2-2x-4y^2-4y\)

\(=\left(x^2-4y^2\right)-\left(2x+4y\right)\)

\(=\left(x-2y\right)\left(x+2y\right)-2\left(x+2y\right)\)

\(=\left(x+2y\right)\left(x-2y-2\right)\)

1 tháng 10 2020

\begin{array}{l} a){\left( {ab - 1} \right)^2} + {\left( {a + b} \right)^2}\\  = {a^2}{b^2} - 2ab + 1 + {a^2} + 2ab + {b^2}\\  = {a^2}{b^2} + 1 + {a^2} + {b^2}\\  = {a^2}\left( {{b^2} + 1} \right) + \left( {{b^2} + 1} \right)\\  = \left( {{a^2} + 1} \right)\left( {{b^2} + 1} \right)\\ c){x^3} - 4{x^2} + 12x - 27\\  = {x^3} - 27 + \left( { - 4{x^2} + 12x} \right)\\  = \left( {x - 3} \right)\left( {{x^2} + 3x + 9} \right) - 4x\left( {x - 3} \right)\\  = \left( {x - 3} \right)\left( {{x^2} + 3x + 9 - 4x} \right)\\  = \left( {x - 3} \right)\left( {{x^2} - x + 9} \right)\\ b){x^3} + 2{x^2} + 2x + 1\\  = {x^3} + 2{x^2} + x + x + 1\\  = x\left( {{x^2} + 2x + 1} \right) + \left( {x + 1} \right)\\  = x{\left( {x + 1} \right)^2} + \left( {x + 1} \right)\\  = \left( {x + 1} \right)\left( {x\left( {x + 1} \right) + 1} \right)\\  = \left( {x + 1} \right)\left( {{x^2} + x + 1} \right)\\ d){x^4} - 2{x^3} + 2x - 1\\  = {x^4} - 2{x^3} + {x^2} - {x^2} + 2x - 1\\  = {x^2}\left( {{x^2} - 2x + 1} \right) - \left( {{x^2} - 2x + 1} \right)\\  = \left( {{x^2} - 2x + 1} \right)\left( {{x^2} - 1} \right)\\  = {\left( {x - 1} \right)^2}\left( {x - 1} \right)\left( {x + 1} \right)\\  = {\left( {x - 1} \right)^3}\left( {x + 1} \right)\\ e){x^4} + 2{x^3} + 2{x^2} + 2x + 1\\  = {x^4} + 2{x^3} + {x^2} + {x^2} + 2x + 1\\  = {x^2}\left( {{x^2} + 2x + 1} \right) + \left( {{x^2} + 2x + 1} \right)\\  = \left( {{x^2} + 2x + 1} \right)\left( {{x^2} + 1} \right)\\  = {\left( {x + 1} \right)^2}\left( {{x^2} + 1} \right) \end{array}

22 tháng 10 2020

a) x2 - 16 - 4xy + 4y2

= ( x2 - 4xy + 4y2 ) - 16

= ( x - 2y )2 - 42

= ( x - 2y - 4 )( x - 2y + 4 )

b) x5 - x4 + x3 - x2

= x2( x3 - x2 + x - 1 )

= x2[ x2( x - 1 ) + ( x - 1 ) ]

= x2( x - 1 )( x2 + 1 )

c) x( x + 4 )( x + 6 )( x + 10 ) + 128 < mình nghĩ là nên sửa đề như này :]> 

= [ x( x + 10 ) ][ ( x + 4 )( x + 6 ) ] + 128

= ( x2 + 10x )( x2 + 10x + 24 ) + 128

Đặt t = x2 + 10x

bthuc <=> t( t + 24 ) + 128

            = t2 + 24t + 128

            = t2 + 16t + 8t + 128

            = t( t + 16 ) + 8( t + 16 ) 

            = ( t + 16 )( t + 8 )

            = ( x2 + 10x + 16 )( x2 + 10x + 8 )

            = ( x2 + 2x + 8x + 16 )( x2 + 10x + 8 )

            = [ x( x + 2 ) + 8( x + 2 ) ]( x2 + 10x + 8 )

            = ( x + 2 )( x + 8 )( x2 + 10x + 8 )

cảm ơn bạn câu c mình chép nhầm nó là 128 đó