Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) \(x^2-y^2-2x-2y=\left(x-y\right)\left(x+y\right)-2\left(x+y\right)=\left(x+y\right)\left(x-y-2\right)\)
b) \(18m^2-36mn+18n^2-72p^2=18\left(m^2-2mn+n^2-4p^2\right)=18\left[\left(m-n\right)^2-4p^2\right]\\ =18\left(m-n+2p\right)\left(m-n-2p\right)\)
c) \(2x^2-5x+7=2x^2+2x-7x-7=2x\left(x+1\right)-7\left(x+1\right)=\left(x+1\right)\left(2x-7\right)\)
d) \(\left(x-1\right)\left(x-2\right)\left(x-3\right)\left(x-4\right)-24\)
\(=\left[\left(x-1\right)\left(x-4\right)\right]\left[\left(x-2\right)\left(\cdot x-3\right)\right]-24\)
\(=\left(x^2-5x+4\right)\left(x^2-5x+6\right)-24\)
Đặt \(x^2+5x+5=t\) pt trở thành:
\(\left(t-1\right)\left(t+1\right)-24=t^2-1-24=t^2-25=\left(t-5\right)\left(t+5\right)\)
Thay vào bên trên
1)a2(b-c)+b2(c-a)+c2(a-b)
=a2b-a2c+b2c-b2a+c2a-c2b
=(a2b-c2b)+(b2c-b2a)+(c2a-a2c)
=b.(a2-c2)-b2.(a-c)-ac.(a-c)
=b.(a-c)(a+c)-b2(a-c)-ac(a-c)
=(a-c)(ab+bc-b2-ac)
=(a-c)[(ab-ac)+(bc-b2)]
=(a-c)[a.(b-c)-b.(b-c)]
=(a-c)(b-c)(a-b)
\(1,\)\(3x-3y-x^2+2xy-y^2\)
\(=-\left(x^2-2xy+y^2\right)+\left(3x-3y\right)\)
\(=-\left(x-y\right)^2+3\left(x-y\right)\)
\(=\left(x-y\right)\left[-\left(x-y\right)+3\right]\)
\(=\left(x-y\right)\left(3-x+y\right)\)
\(2,\)\(49\left(x-4\right)^2-9\left(x+2\right)^2\)
\(=\left[7\left(x-4\right)\right]^2-\left[3\left(x-2\right)\right]^2\)
\(=\left(7x-28-3x+6\right)\left(7x-28+3x-6\right)\)
\(=\left(4x-22\right)\left(10x+34\right)\)
\(3,\)\(x^4+4x^2-5\)
\(=x^4-x^2+5x^2-5\)
\(=x^2\left(x^2-1\right)+5\left(x^2-1\right)\)
\(=\left(x^2+5\right)\left(x-1\right)\left(x+1\right)\)
a)
\(10x^2+10xy+5x+5y\)
\(=10x\left(x+y\right)+5\left(x+y\right)\)
\(=5\left(x+y\right)\left(2x+1\right)\)
b)
\(x^3+x^2-x-1\)
\(=x^2\left(x+1\right)-\left(x+1\right)\)
\(=\left(x-1\right)\left(x^2-1\right)\)
\(=\left(x-1\right)^2\left(x+1\right)\)
c)
\(x+2a\left(x-y\right)-y\)
\(=\left(x-y\right)+2a\left(x-y\right)\)
\(=\left(x-y\right)\left(2a+1\right)\)
d)
\(x^2-y^2+7x-7y\)
\(=\left(x+y\right)\left(x-y\right)+\left(x-y\right)\)
\(=\left(x-y\right)\left(x+y+1\right)\)
1) x(x+3)(x+1)(x+2)+1= (x^2 +3x)(x^2+3x+2)+1
Đặt x^2+3x=a ta có:
a(a+2)+1= a^2 +2a +1= (a+1)^2
Trở về ẩn x có
x(x+3)(x+1)(x+2)+1= (x^2 +3x)^2=x^2(x+3)^2
2) Đặt x^2 + x=a, ta có
a^2 +3a +2= (a^2+a) + (a+2)=a(a+2) +(a+2)=(a+1)(a+2)
Trở về ẩn x có
BT=( x^2 + x+1)(x^2 + x+2)
3) BT= (x-y)^2 +3(x-y) -10
đặt x-y=a ta có
a^2+3a -10= (a^2-2a)+(5a-10)=a(a-2)+5(a-2)=(a+5)(a-2)
trở về ẩn x,y có
BT= (x-y +5)(x-y-2)
Bài 3a)
\(a+b+c=0\Leftrightarrow a+b=-c\Leftrightarrow a^3+b^3+3ab\left(a+b\right)=-c^3\)
\(\Leftrightarrow a^3+b^3+c^3=-3ab\left(a+b\right)\)
mà \(a+b=-c\Rightarrow a^3+b^3+c^3=3abc\)
3x^2+2x-1
=3x^2+3x-x-1
=3x(x+1)-(x+1)
=(x+1)(3x-1)
x^3+6x^2+11x+6
=x^3+5x^2+6x+x^2+5x+6
=x(x^2+5x+6)+(x^2+5x+6)
=(x+1)(x^2+5x+6)
=(x+1)(x^2+3x+2x+6)
=(x+1)(x+2)(x+3)
x^4+2x^2-3
=x^4-x^2+3x^2-3
=x^2(x^2-1)+3(x^2-1)
=(x^2-1)(x^2+3)
=(x+1)(x-1)(x^2+3)
ab+ac+b^2+2bc+c^2
=a(b+c)+(b+c)^2
=(b+c)(a+b+c)
a^3-b^3+c^3+3abc
=(a-b)^3+3ab(a-b)+c^3+3abc
=(a-b+c)^3-3(a-b)c(a-b+c)+3ab(a-b+c)
=(a-b+c)(a^2+b^2+c^2-2ab+2ac-2bc-3ac+3...
=(a-b+c)(a^2+b^2+c^2+ab+bc-ca)
=1/2.(a-b+c)(a^2+2ab+b^2+b^2+2bc+c^2+c...
=1/2.(a-b+c)[(a+b)^2+(b+c)^2+(c-a)^2]
3, \(=x^4-x^2+3x^2-3\)
\(=x^2\left(x^2-1\right)+3\left(x^2-1\right)\)
\(=\left(x^2+3\right)\left(x-1\right)\left(x+1\right)\)
5, nhận xét : \(\left(a-b\right)^3=a^3-3a^2b+3ab^2-b^3\Rightarrow a^3-b^3=\left(a-b\right)^3+3a^2b-3ab^2\)
thay vào đầu bài ta có: \(\left(a-b\right)^3+c^3+3a^2b-3ab^2+3abc\)
\(=\left(a-b+c\right)\left[\left(a-b\right)^2-\left(a-b\right)c+c^2\right]+3ab\left(a-b+c\right)\)
\(=\left(a-b+c\right)\left(a^2-2ab+b^2-ac+bc+c^2+3ab\right)\)
\(=\left(a-b+c\right)\left(a^2+b^2+c^2+ab-ac+bc\right)\)