Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) 12xy( x2 - 2xy + y2) = 12xy( x - y )2
b) ( x2 + xy ) - ( 6x + 6y ) = x( x + y ) - 6( x + y )
= ( x + y )(x - 6)
c) ( 2x2 + 2xy ) - ( x + y ) = 2x(x + y ) - ( x + y )
= (x + y )(2x - 1)
e) ( 3x2 - 3y2 ) - ( 12x + 12y ) = 3( x2 - y2 ) - 12( x + y)
= 3(x - y)(x + y) - 12(x + y) = ( x + y )(3x - 3y - 12)
= 3( x + y )(x - y -4)
g) \(\left[x\left(x+10\right)\right].\left[\left(x+4\right)\left(x+6\right)\right]\) + 128
= (x2 + 10x).(x2 + 10x + 24) + 128
Đặt x2 + 10x + 12 = t
⇒ Biểu thức trên có dạng:
( t - 12 )(t + 12) + 128 = t2 - 144 + 128 = t2 - 16 = t2 - 42
= ( t - 4 )( t + 4) = (x2 + 10x + 12 - 4 )(x2 + 10x + 12 + 4)
= ( x2 + 10x + 8)(x2 + 10x + 16)
f) -2xy + 4y2 = 2y( -x + 2y)
Có 2 phần g nha bạn. Mk chuyển phần cuối thành phần f.
Phần d do mk hơi ngu nên chưa nghĩ ra bạn thông cảm nha.
a) \(12x^5y+24x^4y^2+12x^3y^3\)
\(=12x^3y\left(x^2+2xy+y^2\right)\)
\(=12x^3y\left(x+y\right)^2\)
b) \(x^2-2xy-4+y^2\)
\(=\left(x-y\right)^2-2^2\)
\(=\left(x-y-2\right)\left(x-y+2\right)\)
g) \(12xy-12xz+3x^2y-3x^2z\)
\(=12x\left(y-z\right)+3x^2\left(y-z\right)\)
\(=3x\left(4+x\right)\left(y-z\right)\)
e) \(16x^2-9\left(x^2+2xy+y^2\right)\)
\(=\left(4x\right)^2-\left[3\left(x+y\right)\right]^2\)
\(=\left(4x-3\left(x+y\right)\right)\left(4x+3\left(x+y\right)\right)\)
\(=\left(x+y\right)\left(7x+y\right)\)
d) làm tương tự như phần g chỉ khác là phải nhóm( nhóm xen kẽ), phần f cũng vậy
\(x^3+8y^3+2xy^2+x^2y\)
\(=x^3+2x^2y-x^2y-2xy^2+4xy^2+8y^3\)
\(=x^2\left(x+2y\right)-xy\left(x+2y\right)+4y^2\left(x+2y\right)\)
\(=\left(x+2y\right)\left(x^2-xy+4y^2\right)\)
b: \(x^2-6x+xy-6y\)
\(=x\left(x-6\right)+y\left(x-6\right)\)
\(=\left(x-6\right)\left(x+y\right)\)
c: \(2x^2+2xy-x-y\)
\(=2x\left(x+y\right)-\left(x+y\right)\)
\(=\left(x+y\right)\left(2x-1\right)\)
e: \(x^3-3x^2+3x-1=\left(x-1\right)^3\)
câu a nè = (4x-1)(2x-3)
câu f = (x+y+z) ( x^ 2 + y^2 + z^2 +xy + yz + zx)
a) \(A=x^2-2xy+y^2+3x-3y-4\)
\(=\left(x-y\right)^2-1+3x-3y-3\)
\(=\left(x-y-1\right)\left(x-y+1\right)+3\left(x-y-1\right)\)
\(=\left(x-y-1\right)\left(x-y+1+3\right)\)
\(=\left(x-y-1\right)\left(x-y+4\right)\)
\(e,-5x+x^2-14\)
\(=x^2+2x-7x-14\)
\(=x\left(x+2\right)-7\left(x+2\right)\)
\(=\left(x+2\right)\left(x-7\right)\)
\(f,x^3+8+6x\left(x+2\right)\)
\(=\left(x+2\right)\left(x^2+2x+4\right)+6x\left(x+2\right)\)
\(=\left(x+2\right)\left(x^2+8x+4\right)\)
\(g,15x^2-7xy-2y^2\)
\(=15x^2+3xy-10xy-2y^2\)
\(=3\left(5x+y\right)-2y\left(5x+y\right)\)
\(=\left(5x+y\right)\left(3-2y\right)\)
\(h,3x^2-16x+5\)
\(=3x^2-x-15x+5\)
\(=x\left(3x-1\right)+5\left(3x-1\right)\)
\(=\left(3x-1\right)\left(x+5\right)\)
\(a,x^3+2x^2y+xy^2=x\left(x^2+2xy+y^2\right)\)
\(=x\left(x+y\right)^2\)
\(b,4x^2-9y^2+4x-6y\)
\(=4x^2+4x+1-\left(9y^2+6y+1\right)\)
\(=\left(2x+1\right)^2-\left(3y+1\right)^2\)
\(=\left(2x-3y\right)\left(2x+3y+2\right)\)
\(c,-x^2+5x+2xy-5y-y^2\)
\(=-\left(x^2-2xy+y^2\right)+5\left(x-y\right)\)
\(=-\left(x-y\right)^2+5\left(x-y\right)\)
\(=\left(x-y\right)\left(y-x+5\right)\)
\(d,x^2+4x-12\)
\(=x^2-2x+6x-12\)
\(=x\left(x-2\right)+6\left(x-2\right)\)
\(=\left(x-2\right)\left(x+6\right)\)
Phân tích đa thức thành nhân tử
a. \(12x^3y-24x^2y^2+12xy^3\)
\(=12xy\left(x^2-2xy+y^2\right)\)
\(=12xy\left(x-y\right)^2\)
b. \(x^2-6x+xy-6y\)
\(=x\left(x-6\right)+y\left(x-6\right)\)
\(=\left(x+y\right)\left(x-6\right)\)
c. \(2x^2+2xy-x-y\)
\(=x\left(2x-1\right)+y\left(2x-1\right)\)
\(=\left(x+y\right)\left(2x-1\right)\)
d. \(x^3-3x^2+3x-1\)
\(=\left(x-1\right)^3\)
e. \(x^2-2xy-x^2-4y^2\)
\(=-2xy-4y^2\)
\(=-2y\left(x+2y\right)\)
g. \(x^2-2x+1-16\)
\(=\left(x-1\right)^2-4^2\)
\(=\left(x-1-4\right)\left(x-1+4\right)\)