Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Bài 4:
\(x^3-2x^2+x=x\left(x-1\right)^2\)
\(5\left(x-y\right)-y\left(x-y\right)=\left(x-y\right)\left(5-y\right)\)
\(x^2-12x+36=\left(x-6\right)^2\)
a) \(x^3+8x^2+17x+10\)
\(=x^2\left(x+1\right)+7x\left(x+1\right)+10\left(x+1\right)\)
\(=\left(x+1\right)\left(x^2+7x+10\right)\)
\(=\left(x+1\right)\left(x+2\right)\left(x+5\right)\)
b) \(=x^4-2x^3-12x^2+12x+36\)
\(=x^2\left(x^2-2x-6\right)-2\left(x^2-2x-6\right)\)
\(=\left(x^2-2\right)\left(x^2-2x-6\right)\)
a: \(x^2+12x+36=0\)
=>\(x^2+2\cdot x\cdot6+6^2=0\)
=>\(\left(x+6\right)^2=0\)
=>x+6=0
=>x=-6
b: \(4x^2-4x+1=0\)
=>\(\left(2x\right)^2-2\cdot2x\cdot1+1^2=0\)
=>\(\left(2x-1\right)^2=0\)
=>2x-1=0
=>2x=1
=>x=1/2
c: \(x^3+6x^2+12x+8=0\)
=>\(x^3+3\cdot x^2\cdot2+3\cdot x\cdot2^2+2^3=0\)
=>\(\left(x+2\right)^3=0\)
=>x+2=0
=>x=-2
a) Ta có: \(4x^2-28xy+49y^2\)
\(=\left(2x\right)^2-2\cdot2x\cdot7y+\left(7y\right)^2\)
\(=\left(2x-7y\right)^2\)
b) Ta có: \(x^2+8xy+16y^2\)
\(=x^2+2\cdot x\cdot4y+\left(4y\right)^2\)
\(=\left(x+4y\right)^2\)
c) Ta có: \(x^2-12x+36\)
\(=x^2-2\cdot x\cdot6+6^2\)
\(=\left(x-6\right)^2\)
Bạn cần viết đề bằng công thức toán để được hỗ trợ tốt hơn.
Phân tích đa thức thành nhân tử:
\(36-12x+x^2\)
\(=36-6x-6x+x^2\)
\(=\left(36-6x\right)-\left(6x-x^2\right)\)
\(=6\left(6-x\right)-x\left(6-x\right)\)
\(=\left(6-x\right)\left(6-x\right)=\left(6-x\right)^2\)
\(=2x^4+6x^3-3x^3-9x^2-3x^2-9x+2x+6\)
\(=2x^3\left(x+3\right)-3x^2\left(x+3\right)-3x\left(x+3\right)+2\left(x+3\right)\)
\(=\left(x+3\right)\left(2x^3-4x^2+x^2-2x-x+2\right)=\left(x+3\right)\left(x-2\right)\left(2x^2+x-1\right)\)
\(=\left(x+3\right)\left(x-2\right)\left(2x^2+2x-x-1\right)=\left(x+3\right)\left(x-2\right)\left(x+1\right)\left(2x-1\right)\)
2x^4+3x^3-12x^2-7x+6 = (2x^4-x^3)+(4x^3-2x^2)-(10x^2-5x)-(12x-6)
= x^3.(2x-1)+2x^2.(2x-1)-5x.(2x-1)-6.(2x-1) = (2x-1).(x^3+2x^2-5x-6)
= (2x-1).[ (x^3+x^2)+(x^2+x)-(6x+6) ] = (2x-1).(x+1).(x^2+x-6) = (2x-1).(x-1).[(x^2-2x)+(3x-6)]
= (2x-1).(x+1).(x-2).(x+3)
k mk nha
\(x^4-2x^3-12x^2+12x+36=x^4+x^2+36-2x^3+12x-12x^2-x^2\)
\(=\left(x^2-x-6\right)^2-x^2=\left(x^2-6\right)\left(x^2-2x-6\right)\)