K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

a3+b3+c3-3abc=(a+b+c)(a2+b2+c2-ab-bc-ac)

6 tháng 1 2019

\(a^3+b^3+c^3-3abc\)

\(=\left(a^3+b^3+c^3\right)-3abc\)

\(=\left(a+b\right)^3-3ab\left(a+b\right)+c^3-3abc\)

\(=\left[\left(a+b\right)^3+c^3\right]-\left[3ab\left(a+b\right)+3abc\right]\)

\(=\left(a+b+c\right)\left[\left(a+b\right)^2-\left(a+b\right)c+c^2\right]-3ab\left(a+b+c\right)\)

\(=\left(a+b+c\right)\left(a^2+2ab+b^2-ac-bc-c^2-3ab\right)\)

\(=\left(a+b+c\right)\left(a^2+b^2+c^2-ab-bc-ac\right)\)

12 tháng 8 2016

bài a) bn trên đã dẫn link cho bn r

bài b)

Đặt x-y=a;y-z=b;z-x=c 

\(=>a+b+c=x-y+y-z+z-x=0\)

\(\left(x-y\right)^3+\left(y-z\right)^3+\left(z-x\right)^3=a^3+b^3+c^3\)

Theo câu a)\(a^3+b^3+c^3-3abc=\left(a+b+c\right)\left(a^2+b^2+c^2-ab-bc-ac\right)=0\) (do a+b+c=0)

\(=>a^3+b^3+c^3=3abc=>\left(x-y\right)^3+\left(y-z\right)^3+\left(z-x\right)^3=3\left(x-y\right)\left(y-z\right)\left(z-x\right)\)

a) Ta có :

\(a^3+b^3+c^3-3abc\)

\(\Rightarrow\left(a+b\right)^3-3ab\left(a+b\right)+c^3-3abc\)

\(\Rightarrow\left(a+b+c\right)\left[\left(a+b^2\right)-\left(a+b\right)c+c^2\right]-3ab\left(a+b+c\right)\)

\(\Rightarrow\left(a+b+c\right)\left(a^2+b^2+c^2-ab-bc-ca\right)\)

P/s tham khảo nha

hok tốt

1 tháng 10 2019

\(a^3+b^3+c^3-3abc\)

\(=a^3+3ab\left(a+b\right)+b^3+c^3-3abc-3ab\left(a+b\right)\)

\(=\left(a+b\right)^3+c^3-3ab\left(a+b+c\right)\)

\(=\left(a+b+c\right)\left(a^2+2ab+b^2-ab-ac+c^2\right)-3ab\left(a+b+c\right)\)

\(=\left(a+b+c\right)\left(a^2+b^2+c^2-ab-bc-ca\right)\)

Chúc bạn học tốt nha!!

1 tháng 10 2019

\(a^3+b^3+c^3-3abc\)

\(=\left(a+b\right)^3-3ab\left(a+b\right)+c^3-3ab\)

\(=\left[\left(a+b\right)+c\right]\left[\left(a+b\right)^2-\left(a+b\right)c+c^2\right]-3ab\left(a+b+c\right)\)

\(=\left(a+b+c\right)\left(a^2+2ab+b^2-ac-bc+c^2-3ab\right)\)

\(=\left(a+b+c\right)\left(a^2+b^2+c^2-ac-bc-ab\right)\)

20 tháng 9 2015

a) = a3+b3+c3 +3a2b +3ab2 -3ab(a+b) - 3abc

= (a+b)3+c3-3ab(a+b)-3abc (áp dụng A3+B3 ta có)

=(a+b+c) ( (a+b)- (a+b)c +c2) - 3ab(a+b+c)

=(a+b+c) ( (a+b)2 - (a+b)c +c2 - 3ab) (nhân tử chung là a+b+c)

=(a+b+c) ( a2+2ab+b2- ac-bc +c2 -3ab)

=(a+b+c) (a2+b2+c2-ab-ac-bc)

Phần b tương tự

1 tháng 10 2019

Câu hỏi của Bắp Ngô - Toán lớp 8 - Học toán với OnlineMath

Tham khảo

6 tháng 8 2017

\(a^3+b^3+c^3-3abc\)

\(=\left(a+b\right)^3+c^3-3ab\left(a+b\right)-3abc\)

\(=\left(a+b+c\right)^3-3c\left(a+b\right)\left(a+b+c\right)-3ab\left(a+b+c\right)\)

\(=\left(a+b+c\right)\left[\left(a+b+c\right)^2-3ac-3bc-3ab\right]\)

\(=\left(a+b+c\right)\left(a^2+b^2+c^2+2ac+2bc+2ab-3ac-3bc-3ab\right)\)

\(=\left(a+b+c\right)\left(a^2+b^2+c^2-ab-ac-bc\right)\)

8 tháng 7 2017

a)x(x+1)\(^2\)

b)(y-1)(x+y)

8 tháng 7 2017

Ta có : x3 + 2x2 + x 

= x3 + x2 + x2 + x

= x2(x + 1) + x(x + 1)

= (x2 + x) (x + 1)

= x(x + 1)(x + 1)

21 tháng 7 2016

Ta có : \(a^3+b^3+c^3-3abc=\left(a+b\right)^3+c^3-3a^2b-3ab^2-3abc\)

\(=\left(a+b+c\right)\text{[}\left(a+b\right)^2-\left(a+b\right).c+c^2\text{ }\text{]}-3ab\left(a+b+c\right)\)

\(=\left(a+b+c\right)\left(a^2+2ab+b^2-ac-bc+c^2\right)-3ab\left(a+b+c\right)\)

\(=\left(a+b+c\right)\left(a^2+b^2+c^2-ac-bc+2ab-3ab\right)\)

\(=\left(a+b+c\right)\left(a^2+b^2+c^2-ab-ac-bc\right)\)

5 tháng 8 2015

a^3+b^3+c^3−3abc
=a^3+3ab(a+b)+b^3+c^3−3abc−3ab(a+b)
=(a+b)^3+c^3−3ab(a+b+c)
=(a+b+c)(a^2+2ab+b^2−ab−ac+c^2)−3ab(a+b+c)
=(a+b+c)(a^2+b^2+c^2−ab−bc−ca)

5 tháng 8 2015

     a^3 + b^3 + c^3 - 3abc 

=  ( a+ b)^3 - 3ab ( a+ b) - 3abc 

= ( a+ b +c )^3 - 3 ( a + b ).c(a + b +c ) -3ab (a+ b ) -3abc

= ( a+ b +c)^3 - 3(a+b).c(a+b+c) - 3ab(a+b+c)

= ( a+  b +c )[ ( a + b +c )^2 - 3(a+b).c - 3ab ] 

= ( a+  b + c ) [ a^2 + 2ab + b^2 + 2bc+ c^2 +2 ac - 3ac - 3bc - 3ab )

= ( a + b + c)(a^2 + b^2 + c^2 -ab - bc- ca)

Tick đúng nha 

 

 

23 tháng 6 2017

a3+b3+c3−3abca3+b3+c3−3abc

=a3+3ab(a+b)+b3+c3−3abc−3ab(a+b)=a3+3ab(a+b)+b3+c3−3abc−3ab(a+b)

=(a+b)3+c3−3ab(a+b+c)=(a+b)3+c3−3ab(a+b+c)

=(a+b+c)(a2+2ab+b2−ab−ac+c2)−3ab(a+b+c)=(a+b+c)(a2+2ab+b2−ab−ac+c2)−3ab(a+b+c)

=(a+b+c)(a2+b2+c2−ab−bc−ca)=(a+b+c)(a2+b2+c2−ab−bc−ca) 

23 tháng 6 2017

 Câu hỏi của Hiền Nguyễn - Toán lớp 8 - Học toán với OnlineMath