K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

1 tháng 10 2019

\(a^3+b^3+c^3-3abc\)

\(=a^3+3ab\left(a+b\right)+b^3+c^3-3abc-3ab\left(a+b\right)\)

\(=\left(a+b\right)^3+c^3-3ab\left(a+b+c\right)\)

\(=\left(a+b+c\right)\left(a^2+2ab+b^2-ab-ac+c^2\right)-3ab\left(a+b+c\right)\)

\(=\left(a+b+c\right)\left(a^2+b^2+c^2-ab-bc-ca\right)\)

Chúc bạn học tốt nha!!

1 tháng 10 2019

\(a^3+b^3+c^3-3abc\)

\(=\left(a+b\right)^3-3ab\left(a+b\right)+c^3-3ab\)

\(=\left[\left(a+b\right)+c\right]\left[\left(a+b\right)^2-\left(a+b\right)c+c^2\right]-3ab\left(a+b+c\right)\)

\(=\left(a+b+c\right)\left(a^2+2ab+b^2-ac-bc+c^2-3ab\right)\)

\(=\left(a+b+c\right)\left(a^2+b^2+c^2-ac-bc-ab\right)\)

12 tháng 8 2016

bài a) bn trên đã dẫn link cho bn r

bài b)

Đặt x-y=a;y-z=b;z-x=c 

\(=>a+b+c=x-y+y-z+z-x=0\)

\(\left(x-y\right)^3+\left(y-z\right)^3+\left(z-x\right)^3=a^3+b^3+c^3\)

Theo câu a)\(a^3+b^3+c^3-3abc=\left(a+b+c\right)\left(a^2+b^2+c^2-ab-bc-ac\right)=0\) (do a+b+c=0)

\(=>a^3+b^3+c^3=3abc=>\left(x-y\right)^3+\left(y-z\right)^3+\left(z-x\right)^3=3\left(x-y\right)\left(y-z\right)\left(z-x\right)\)

a) Ta có :

\(a^3+b^3+c^3-3abc\)

\(\Rightarrow\left(a+b\right)^3-3ab\left(a+b\right)+c^3-3abc\)

\(\Rightarrow\left(a+b+c\right)\left[\left(a+b^2\right)-\left(a+b\right)c+c^2\right]-3ab\left(a+b+c\right)\)

\(\Rightarrow\left(a+b+c\right)\left(a^2+b^2+c^2-ab-bc-ca\right)\)

P/s tham khảo nha

hok tốt

8 tháng 7 2017

a)x(x+1)\(^2\)

b)(y-1)(x+y)

8 tháng 7 2017

Ta có : x3 + 2x2 + x 

= x3 + x2 + x2 + x

= x2(x + 1) + x(x + 1)

= (x2 + x) (x + 1)

= x(x + 1)(x + 1)

20 tháng 9 2015

a) = a3+b3+c3 +3a2b +3ab2 -3ab(a+b) - 3abc

= (a+b)3+c3-3ab(a+b)-3abc (áp dụng A3+B3 ta có)

=(a+b+c) ( (a+b)- (a+b)c +c2) - 3ab(a+b+c)

=(a+b+c) ( (a+b)2 - (a+b)c +c2 - 3ab) (nhân tử chung là a+b+c)

=(a+b+c) ( a2+2ab+b2- ac-bc +c2 -3ab)

=(a+b+c) (a2+b2+c2-ab-ac-bc)

Phần b tương tự

18 tháng 10 2019

(a-b)+ (b-c)+ (c-a)3

=a- 3a2b + 3ab2- b+ b- 3b2c + 3bc2- c+ c- 3c2a + 3ca2- a3

=(-3a2b) + 3ab2 - 3b2c + 3bc2 - 3c2a +3ca2

=(-3a2b) + 3(ab2 - b2c + bc2 - c2a + ca2)

=(-3a2b) + 3[ab2 - b(bc - c2) - c(ca - a2)]

1 tháng 10 2019

Câu hỏi của Bắp Ngô - Toán lớp 8 - Học toán với OnlineMath

Tham khảo

5 tháng 7 2016

a) \(x^2+2x+1=x^2+x+x+1=x\left(x+1\right)+\left(x+1\right)=\left(x+1\right)\left(x+1\right)=\left(x+1\right)^2\)    *Câu này có thể áp dụng hằng đẳng thức \(a^2+2ab+b^2=\left(a+b\right)^2\)  cho nhanh*

b) \(a^3-b^3+c^3+3abc=\left(a^3-3a^2b+3ab^2-b^2\right)+3a^2b-3ab^2+c^3+3abc\)

\(=\left(a-b\right)^3+c^3+\left(3a^2b-3ab^2+3abc\right)\) 

\(=\left(a-b+c\right)\left[\left(a-b\right)^2-\left(a-b\right)c+c^2\right]+3ab\left(a-b+c\right)\)

\(=\left(a-b+c\right)\left(a^2-2ab+b^2-ac+bc+c^2+3ab\right)\)

\(=\left(a-b+c\right)\left(a^2+b^2+c^2-ac+bc+ab\right)\)

c) \(a^3-b^3-c^3-3abc=\left[a^3-3a^2b+3ab^2-b^3\right]+3a^2b-3ab^2-c^3-3abc\)

\(=\left[\left(a-b\right)^3-c^3\right]+3ab\left(a-b-c\right)=\left(a-b-c\right)\left[\left(a-b\right)^2+\left(a-b\right)c+c^2\right]+3ab\left(a-b-c\right)\)

\(=\left(a-b-c\right)\left[a^2-2ab+b^2+ac-bc+c^2+3ab\right]=\left(a-b-c\right)\left(a^2+b^2+c^2+ab+ac-bc\right)\)

 

 

 

 

 

5 tháng 7 2016

a,(x+1)2

b,(a+c-b).{(a+c)^2+(a+c)b+b^2-3ac}

c,(a-c-b).{(a-c)^2+(a-c)b+b^2+3ac}

a3+b3+c3-3abc=(a+b+c)(a2+b2+c2-ab-bc-ac)

6 tháng 1 2019

\(a^3+b^3+c^3-3abc\)

\(=\left(a^3+b^3+c^3\right)-3abc\)

\(=\left(a+b\right)^3-3ab\left(a+b\right)+c^3-3abc\)

\(=\left[\left(a+b\right)^3+c^3\right]-\left[3ab\left(a+b\right)+3abc\right]\)

\(=\left(a+b+c\right)\left[\left(a+b\right)^2-\left(a+b\right)c+c^2\right]-3ab\left(a+b+c\right)\)

\(=\left(a+b+c\right)\left(a^2+2ab+b^2-ac-bc-c^2-3ab\right)\)

\(=\left(a+b+c\right)\left(a^2+b^2+c^2-ab-bc-ac\right)\)

21 tháng 7 2016

Ta có : \(a^3+b^3+c^3-3abc=\left(a+b\right)^3+c^3-3a^2b-3ab^2-3abc\)

\(=\left(a+b+c\right)\text{[}\left(a+b\right)^2-\left(a+b\right).c+c^2\text{ }\text{]}-3ab\left(a+b+c\right)\)

\(=\left(a+b+c\right)\left(a^2+2ab+b^2-ac-bc+c^2\right)-3ab\left(a+b+c\right)\)

\(=\left(a+b+c\right)\left(a^2+b^2+c^2-ac-bc+2ab-3ab\right)\)

\(=\left(a+b+c\right)\left(a^2+b^2+c^2-ab-ac-bc\right)\)