Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a, 4x2 - 12x + 9
= (2x + 3)2
b, 9x4y3 + 3x2y4
= 3x2y3(3x2 + y)
c, ( x - 3 )2 - 2x ( x - 3 )
= (x - 3)(x - 3 - 2x)
= (x - 3)(-x - 3)
d, 3x ( x - 1 ) + 6 ( x - 1 )
= 3(x - 1)(x + 2)
e, 2x ( x + 1 ) - 4x - 4
= 2x(x + 1) - 4(x + 1)
= (x + 1)(2x - 4)
= 2(x + 1)(x - 2)
f, ( 2x - 3 )2 - 4x + 6
= (2x - 3)2 - 2(2x - 3)
= (2x - 3)(2x - 3 - 2)
= (2x - 3)(2x - 5)
b) \(x^3-4x^2-12x+27=\left(x^3+27\right)-\left(4x^2+12x\right)\)
\(=\left(x+3\right)\left(x^2-3x+9\right)-4x\left(x+3\right)\)
\(=\left(x+3\right)\left(x^2-3x+9-4x\right)\)
\(=\left(x+3\right)\left(x^2-7x+9\right)\)
d) \(x^{16}-1=\left(x^4-1\right)\left(x^4+1\right)=\left(x^2-1\right)\left(x^2+1\right)\left(x^4+1\right)\)
b)3x^2-18x+27=3x^2-9x-9x+27=3x*(x-3)-9*(x-3)=(x-3)*(3x-9)=(x-3)*3*(x-3)=3*(x-3)^2
c)x^3-4x^2-12x+27=(x+3)*(x^2-3x+9-4)=(x+3)*(x^2-3x+5)
d)27x^3-1/27=(3x-1/3)*(9x^2-x+1/9) (hang dt)
con a) voi e) mk chiu
x4 - 9x3 + 28x2 - 36x + 16
Thử với x = 4 ta có :
44 - 9.43 + 28.42 - 36.4 + 16 = 0
Vậy 4 là nghiệm của đa thức . Theo hệ quả của định lí Bézout thì đa thức trên chia hết cho x - 4
Thực hiện phép chia đa thức cho x - 4 ta được x3 - 5x2 + 8x - 4
Vậy ta phân tích được ( x - 4 )( x3 - 5x2 + 8x - 4 )
Tiếp tục : Thử x = 2 với x3 - 5x2 + 8x - 4
Ta có : 23 - 5.22 + 8.2 - 4 = 0
Vậy 2 là nghiệm của đa thức . Theo hệ quả của định lí Bézout thì x3 - 5x2 + 8x - 4 chia hết cho x - 2
Thực hiện phép chia x3 - 5x2 + 8x - 4 cho x - 2 ta được x2 - 3x + 2
Vậy ta phân tích được ( x - 4 )( x - 2 )( x2 - 3x + 2 )
x2 - 3x + 2 = x2 - x - 2x + 2
= x( x - 1 ) - 2( x - 1 )
= ( x - 2 )( x - 1 )
Vậy : x4 - 9x3 + 28x2 - 36x + 16 = ( x - 4 )( x - 2 )( x - 2 )( x - 1 ) = ( x - 4 )( x - 2 )2( x - 1 )
a. \(x^4-9x^3+28x^2-36x+16\)
\(=x^4-8x^3+20x^2-16x-x^3+8x^2-20x+16\)
\(=x\left(x^3-8x^2+20x-16\right)-\left(x^3-8x^2+20x-16\right)\)
\(=\left(x-1\right)\left(x^3-8x^2+20x-16\right)\)
\(=\left(x-1\right)\left(x^3-6x^2+8x-2x^2+12x-16\right)\)
\(=\left(x-1\right)\left[x\left(x^2-6x+8\right)-2\left(x^2-6x+8\right)\right]\)
\(=\left(x-1\right)\left(x-2\right)\left(x^2-6x+8\right)\)
\(=\left(x-1\right)\left(x-2\right)\left(x^2-2x-4x+8\right)\)
\(=\left(x-1\right)\left(x-2\right)\left[x\left(x-2\right)-4\left(x-2\right)\right]\)
\(=\left(x-1\right)\left(x-2\right)^2\left(x-4\right)\)
(x2+2x)2+9x2+18x+20
=(x2+2x)2+9(x2+2x)+20
Đặt t=x2+2x ta được:
t2+9t+20=t2+4t+5t+20
=t.(t+4)+5.(t+4)
=(t+4)(t+5)
thay t=x2+2x ta được:
(x2+2x+4)(x2+2x+5)
Vậy (x2+2x)2+9x2+18x+20=(x2+2x+4)(x2+2x+5)
\(x^2-2x-4y^2-4y\)
\(=\left(x^2-4y^2\right)-\left(2x+4y\right)\)
\(=\left(x-2y\right)\left(x+2y\right)-2\left(x+2y\right)\)
\(=\left(x+2y\right)\left(x-2y-2\right)\)
\begin{array}{l} a){\left( {ab - 1} \right)^2} + {\left( {a + b} \right)^2}\\ = {a^2}{b^2} - 2ab + 1 + {a^2} + 2ab + {b^2}\\ = {a^2}{b^2} + 1 + {a^2} + {b^2}\\ = {a^2}\left( {{b^2} + 1} \right) + \left( {{b^2} + 1} \right)\\ = \left( {{a^2} + 1} \right)\left( {{b^2} + 1} \right)\\ c){x^3} - 4{x^2} + 12x - 27\\ = {x^3} - 27 + \left( { - 4{x^2} + 12x} \right)\\ = \left( {x - 3} \right)\left( {{x^2} + 3x + 9} \right) - 4x\left( {x - 3} \right)\\ = \left( {x - 3} \right)\left( {{x^2} + 3x + 9 - 4x} \right)\\ = \left( {x - 3} \right)\left( {{x^2} - x + 9} \right)\\ b){x^3} + 2{x^2} + 2x + 1\\ = {x^3} + 2{x^2} + x + x + 1\\ = x\left( {{x^2} + 2x + 1} \right) + \left( {x + 1} \right)\\ = x{\left( {x + 1} \right)^2} + \left( {x + 1} \right)\\ = \left( {x + 1} \right)\left( {x\left( {x + 1} \right) + 1} \right)\\ = \left( {x + 1} \right)\left( {{x^2} + x + 1} \right)\\ d){x^4} - 2{x^3} + 2x - 1\\ = {x^4} - 2{x^3} + {x^2} - {x^2} + 2x - 1\\ = {x^2}\left( {{x^2} - 2x + 1} \right) - \left( {{x^2} - 2x + 1} \right)\\ = \left( {{x^2} - 2x + 1} \right)\left( {{x^2} - 1} \right)\\ = {\left( {x - 1} \right)^2}\left( {x - 1} \right)\left( {x + 1} \right)\\ = {\left( {x - 1} \right)^3}\left( {x + 1} \right)\\ e){x^4} + 2{x^3} + 2{x^2} + 2x + 1\\ = {x^4} + 2{x^3} + {x^2} + {x^2} + 2x + 1\\ = {x^2}\left( {{x^2} + 2x + 1} \right) + \left( {{x^2} + 2x + 1} \right)\\ = \left( {{x^2} + 2x + 1} \right)\left( {{x^2} + 1} \right)\\ = {\left( {x + 1} \right)^2}\left( {{x^2} + 1} \right) \end{array} |
Bài 1:tìm x ,biết:
a) (2x - 1)(3x + 2) - 6x(x + 1) = 0
\(\Leftrightarrow6x^2+x-2-6x^2-6x=0\)
\(\Leftrightarrow-5x=2\)
\(\Leftrightarrow x=\frac{-2}{5}\)
b) \(\left(4x-1\right)^2-\left(2x+1\right)\left(8x-3\right)=0\)
\(\Leftrightarrow16x^2-8x+1-16x^2-2x+3=0\)
\(\Leftrightarrow-10x=-4\)
\(\Leftrightarrow x=\frac{2}{5}\)
c) \(4x^2-1=2\left(2x+1\right)\)
\(\Leftrightarrow\left(2x+1\right)\left(2x-1\right)-2\left(2x+1\right)=0\)
\(\Leftrightarrow\left(2x+1\right)\left(2x-3\right)=0\)
\(\Leftrightarrow\orbr{\begin{cases}x=-\frac{1}{2}\\x=\frac{3}{2}\end{cases}}\)
2a) \(4x^2-9y^2-6y-1=4x^2-\left(3y+1\right)^2\)
\(=\left(2x-3y-1\right)\left(2x+3y+1\right)\)
b) \(4x^2-1-2x\left(2x-1\right)=\left(2x-1\right)\left(2x+1\right)-2x\left(2x-1\right)\)
\(=1.\left(2x-1\right)\)
c) \(x^2-8x-4y^2+16=\left(x-4\right)^2-4y^2\)
\(=\left(x-4-2y\right)\left(x-4+2y\right)\)
d) \(9x^2-12x-y^2+4=\left(3x-2\right)^2-y^2\)
\(=\left(3x-2-y\right)\left(3x-2+y\right)\)
e) \(4x^2+10x-5=4x^2+2.2.\frac{5}{2}x+\frac{25}{4}-\frac{25}{4}-5\)
\(=\left(2x+\frac{5}{2}\right)^2-\frac{45}{4}\)
\(=\left(2x+\frac{5+3\sqrt{5}}{2}\right)\left(2x+\frac{5-3\sqrt{5}}{2}\right)\)
a) ( 4x+1) (12x-1) (3x+2) (x+1) -4
=(4x+1)(3x+2)(12x-1)(x+1)-4
=(12x2+11x+2)(12x2+11x-1)-4
Đặt t=12x2+11x+2 ta được:
t.(t-3)-4
=t2-3t-4
=t2+t-4t-4
=t.(t+1)-4.(t+1)
=(t+1)(t-4)
thay t=12x2+11x+2 ta được:
(12x2+11x+3)(12x2+11x-2)
Vậy ( 4x+1) (12x-1) (3x+2) (x+1) -4=(12x2+11x+3)(12x2+11x-2)
b) (x2+2x)2+9x2+18x+20
=(x2+2x)2+9.(x2+2x)+20
Đặt y=x2+2x ta được:
y2+9y+20
=y2+4y+5y+20
=y.(y+4)+5.(y+4)
=(y+4)(y+5)
thay y=x2+2x ta được:
(x2+2x+4)(x2+2x+5)
Vậy (x2+2x)2+9x2+18x+20=(x2+2x+4)(x2+2x+5)