Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Đây là một dạng phân tích thừa số nguyên tố khá quen, cô sẽ hướng dẫn e nhé :) Ta cần ghép các hạng tử để xuất hiện các thành phần chứa biến giống nhau.
\(A=\left(4x+1\right)\left(12x-1\right)\left(3x+2\right)\left(x+1\right)-4=\left(4x+1\right)\left(3x+2\right)\left(12x-1\right)\left(x+1\right)-4\)
\(=\left(12x^2+11x+2\right)\left(12x^2+11x-1\right)-4\)
Đặt \(12x^2+11x+2=t\Rightarrow A=t\left(t-3\right)-4=t^2-3t-4=\left(t-4\right)\left(t+1\right)\)
Quay lại biến x ta có: \(A=\left(12x^2+11x-2\right)\left(12x^2+11x+3\right)\)
Câu sau tương tự nhé :)
\(\left(x+5\right)\left(x-5\right)-\left(x-2\right)\left(x+7\right)=0\)
\(\left(x^2-5^2\right)-\left(x^2+7x-2x-14\right)=0\)
\(x^2-25-x^2-7x+2x+14=0\)
\(-5x=25-14\)
\(-5x=11\)
\(x=-\frac{11}{5}\)
***
\(9x^2-4-2\left(3x-2\right)^2=0\)
\(\left(3x\right)^2-2^2-2\left(3x-2\right)^2=0\)
\(\left(3x-2\right)\left(3x+2\right)-2\left(3x-2\right)^2=0\)
\(\left(3x-2\right)\left[\left(3x+2\right)-2\left(3x-2\right)\right]=0\)
\(\left(3x-2\right)\left(3x+2-6x+4\right)=0\)
\(\left(3x-2\right)\left(6-3x\right)=0\)
TH1:
\(3x-2=0\)
\(3x=2\)
\(x=\frac{2}{3}\)
TH2:
\(6-3x=0\)
\(3x=6\)
\(x=\frac{6}{3}\)
\(x=2\)
Vậy \(x=\frac{2}{3}\) hoặc \(x=2\)
***
\(12\left(3-4x\right)+7\left(4x-3\right)=0\)
\(12\left(3-4x\right)-7\left(3-4x\right)=0\)
\(\left(3-4x\right)\left(12-7\right)=0\)
\(5\left(3-4x\right)=0\)
\(3-4x=0\)
\(4x=3\)
\(x=\frac{3}{4}\)
***
\(x^2-4-2xy+y^2=\left(x-y\right)^2-2^2=\left(x-y-2\right)\left(x-y+2\right)\)
***
\(x^3-4x^2-12x+27=\left(x+3\right)\left(x^2-3x+9\right)-4x\left(x+3\right)=\left(x+3\right)\left(x^2-3x+9-4x\right)=\left(x+3\right)\left(x^2-7x+9\right)\)
***
\(3x^2-18x+27=3\left(x^2-2\times x\times3+3^2\right)=3\left(x-3\right)^2\)
***
\(A=-x^2+3x-4=-\left(x^2-2\times x\times\frac{3}{2}+\left(\frac{3}{2}\right)^2-\left(\frac{3}{2}\right)^2+4\right)=-\left[\left(x-\frac{3}{2}\right)^2+\frac{7}{4}\right]\)
\(\left(x-\frac{3}{2}\right)^2\ge0\)
\(\left(x-\frac{3}{2}\right)^2+\frac{7}{4}\ge\frac{7}{4}\)
\(-\left[\left(x-\frac{3}{2}\right)^2+\frac{7}{4}\right]\le-\frac{7}{4}< 0\)
Vậy A < 0 với mọi x (đpcm)
1a (x+5)(x-5)-(x-2)(x+7) = 0
=> x2-25-(x2+5x-14) = 0
=> x2-25-x2-5x+14 = 0
=> -11-5x = 0
=> -5x = -11-0
=> -5x = -11
=> x = -11:5
=> x = \(\frac{-11}{5}\)
bài 2:
1) (x-y)2-4
3) 3(x2-6x+9)
1,
a, = 2x.(x-2)
b, = (x^2+y^2+2xy)-(2x+2y)
= (x+y)^2-2.(x+y)
= (x+y).(x+y-2)
2,
a,<=> x^2-1-x^2-2x = 3
<=> -2x-1=3
<=> -2x=4
<=> x=4 : (-2) = -2
b, <=>(x^2-4x+4)-7=0
<=>(x-2)^2-7=0
<=> (x-2)^2=7
=> x-2=+-\(\sqrt{7}\)
<=> x=2+-\(\sqrt{7}\)
k mk nha
a, \(2x-4x\)
\(=-2x\)
b, \(x^2+y^2+2xy-2x-2y\)
\(=\left(x+y\right)^2-2\left(x+y\right)\)
\(=\left(x+y\right)\left(x+y-2\right)\)
a, \(\left(x+1\right)\left(x-1\right)-x\left(x+2\right)=3\)
\(\Leftrightarrow x^2-1-x^2-2x=3\)
\(\Leftrightarrow-2x=4\)
\(\Leftrightarrow x=-2\)
b,\(x^2-4x+3=0\)
\(\Leftrightarrow\left(x-1\right)\left(x-3\right)=0\)
\(\Leftrightarrow\orbr{\begin{cases}x-1=0\\x-3=0\end{cases}\Leftrightarrow}\orbr{\begin{cases}x=1\\x=3\end{cases}}\)
a) \(x^2+4x+3\)
\(=x^2+3x+x+3\)
\(=x\left(x+3\right)+\left(x+3\right)\)
\(=\left(x+1\right)\left(x+3\right)\)
a) \(4x^2-8x+4-9\left(x-y\right)^2\)
\(=4\left(x^2-2x+1\right)-9\left(x-y\right)^2\)
\(=\left[2\left(x-1\right)\right]^2-\left[3\left(x-y\right)\right]^2\)
\(=\left(2x-2+3x-3y\right)\left(2x-2-3x+3y\right)\)
\(=\left(5x-3y-2\right)\left(3y-x-2\right)\)
b) \(x^3-4x^2+12x-27\)
\(=\left(x^3-27\right)-\left(4x^2-12x\right)\)
\(=\left(x-3\right)\left(x^2+3x+9\right)-4x\left(x-3\right)\)
\(=\left(x-3\right)\left(x^2-x+9\right)\)
1.a)\(x^2-ax+bx-ab=x\left(x-a\right)+b\left(x-a\right)=\left(x+b\right)\left(x-a\right)\)
b)\(x^2+ay-y^2-ax=\left(x-y\right)\left(x+y\right)-a\left(x-y\right)=\left(x+y-a\right)\left(x-y\right)\)
c)\(x^3-3x^2-4x+12=x^2\left(x-3\right)-4\left(x-3\right)=\left(x^2-4\right)\left(x-3\right)=\left(x-2\right)\left(x+2\right)\left(x-3\right)\)
2.a)\(2x^2-12x=-18=>2x^2-12x+18=0=>x^2-6x+9=0=>\left(x-3\right)^2=0=>x-3=0=>x=3\)b)\(\left(4x^2-4x+1\right)-x^2=0=>3x^2-3x-x+1=3x\left(x-1\right)-\left(x-1\right)=\left(3x-1\right)\left(x-1\right)=0\)
\(=>\orbr{\begin{cases}3x-1=0\\x-1=0\end{cases}=>\orbr{\begin{cases}x=\frac{1}{3}\\x=1\end{cases}}}\)
a) 2x2 - 12x = -18
<=> 2x2 - 12x + 18 = 0
<=> 2(x2 - 6x + 9) = 0
<=> 2(x2 - 2.x.3 + 9) = 0
<=> 2(x - 3)2 = 0
<=> x - 3 = 0
<=> x = 0 + 3
<=> x = 3
b) (4x2 - 4x + 1) - x2 = 0
<=> 4x2 - 4x + 1 - x2 = 0
<=> 3x2 - 4x + 1 = 0
<=> 3x2 - x - 3x + 1 = 0
<=> x(3x - 1) - (3x - 1) = 0
<=> \(\orbr{\begin{cases}\left(3x-1\right)=0\\\left(x-1\right)=0\end{cases}}\)<=> \(\orbr{\begin{cases}x=\frac{1}{3}\\x=1\end{cases}}\)
=> \(\orbr{\begin{cases}x=\frac{1}{3}\\x=1\end{cases}}\)
x3-12x-4x2+27
=(x3+27)-(12x+4x2)
=(x+3)(x2-3x+9)-4x(x+3)
=(x+3)(x2-3x+9-4x)
=(x+3)(x2-7x+9)
\(x^3-12x-4x^2+27\)
\(=x^3+3x^2-7x^2-21x+9x+27\)
\(=x^2\left(x+3\right)-7x\left(x+3\right)+9\left(x+3\right)\)
\(=\left(x+3\right)\left(x^2-7x+9\right)\)
\(\left(x+1\right)\left(x+2\right)-\left(x+2\right)\left(x+3\right)=0\)
\(\Leftrightarrow\left(x+2\right)\left(x+1-x-3\right)=0\)
\(\Leftrightarrow-2\left(x+2\right)=0\)
\(\Leftrightarrow x=-2\)
\(4x^2-12x+5=4x^2-10x-2x+5=2x\left(2x-5\right)-\left(2x-5\right)=\left(2x-1\right)\left(2x-5\right)\)
\(\left(x+1\right)\left(x+2\right)-\left(x+2\right)\left(x+3\right)=0\)
\(\left(x+2\right)\left(-2\right)=0\)\(\Rightarrow x+2=0\) hay \(x=-2\)