Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Sai đề rồi đa thức này không có nghiêm làm sao phân tích được
a)
\(x^2-x-12\)
\(=x^2-4x+3x-12\)
\(=x\left(x-4\right)+3\left(x-4\right)\)
\(=\left(x-4\right)\left(x+3\right)\)
b)
Đặt \(x^2+3x+1=t\), ta có:
\(t\left(t+1\right)-6\)
\(=t^2+t-6\)
\(=t^2+3x-2x-6\)
\(=t\left(t+3\right)-2\left(t+3\right)\)
\(=\left(t+3\right)\left(t-2\right)\)
a, \(x^2-x-12\)
\(=x^2-4x+3x-12\)
\(=x\left(x-4\right)+3\left(x-4\right)\)
\(=\left(x-4\right)\left(x+3\right)\)
b, \(\left(x^2+3x+1\right)\left(x^2+3x+2\right)-6\)
\(=\left(x^2+3x+1,5\right)^2-0,5^2-6\)
\(=\left(x^2+3x+1,5\right)^2-2,5^2\)
\(=\left(x^2+3x+1,5-2,5\right)\left(x^2+3x+1,5+2,5\right)\)
\(=\left(x^2+3x-1\right)\left(x^1+3x+1\right)\)
Sai đề nhé bạn
\(\left(x^2+x+1\right)\left(x^2+x+2\right)-12\)
Đặt \(x^2+x+1=t\)
Đa thức trở thành \(t\left(t+1\right)-12\)
\(=t^2+t-12\)
\(=t^2+3t-4t-12\)
\(=t\left(t+3\right)-4\left(t+3\right)\)
\(=\left(t+3\right)\left(t-4\right)\)
Thay vào ta được
\(\left(x^2+x+4\right)\left(x^2+x-3\right)\)
a, \(=x^5+x^4+x^3-x^4-x^3-x^2+x^2+x+1\)
\(=x^3\left(x^2+x+1\right)-x^2\left(x^2+x+1\right)+\left(x^2+x+1\right)\)
\(=\left(x^2+x+1\right)\left(x^3-x^2+1\right)\)
Lời giải:
Đặt $x^2+x+1=a$. Khi đó:
$(x^2+x+1)(x^2+x+2)-12=a(a+1)-12=a^2+a-12$
$=(a^2-3a)+(4a-12)=a(a-3)+4(a-3)=(a-3)(a+4)$
$=(x^2+x-2)(x^2+x+5)$
$=[x(x-1)+2(x-1)](x^2+x+5)$
$=(x-1)(x+2)(x^2+x+5)$