Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Đặt: \(x^2-6x+1=a;x^2+1=b\)
Khi đó đa thức này có dạng:
\(2a^2+5ab+2b^2=2a^2+4ab+ab+2b^2\)
\(=2a\left(a+2b\right)+b\left(a+2b\right)=\left(a+2b\right)\left(2a+b\right)\)
Thay lại a và b thì được:
\(\left(a+2b\right)\left(2a+b\right)=\left(x^2-6x+1+2x^2+2\right)\left(2x^2-12x+2+x^2+1\right)\)
\(=\left(3x^2-6x+3\right)\left(3x^2-12x+3\right)\)
\(=9\left(x-1\right)^2\left(x^2-4x+1\right)\)
Vậy ...
Ta có (6x+5)2(3x+2)(x+1)-35
= (36x2+60x+25)(3x2+5x+2)-35 (1)
Đặt a=3x2+5x+2
=> 12a+1= 12(3x2+5x+2)+1 =36x2+60x+25
Thay a=3x2+5x+2 vào (1) ta được
(12a+1).a-35=12a2+a-35
= 12a2-20a+21a-35
= 4a(3a-5)+7(3a-5)
= (3a-5)(4a+7) (2)
Thay 3x2+5x+2=a vào (2) ta được
(9x2+15x+6-5)(12x2+20x+8+7)
= (9x2+15x+1)(12x2+20x+15)
Ta có: \(\left(6x+5\right)^2\left(3x+2\right)\left(x+1\right)-35\)
\(=\left(36x^2+60x+25\right)\left(3x^2+5x+2\right)-35\)(1)
Đặt \(3x^2+5x+2=y\)
\(\left(1\right)=\left(12y+1\right)y-35\)
\(=12y^2+y-35\)
\(=\left(3y-5\right)\left(4y+7\right)\)
\(=\left(9x^2+15x+1\right)\left(12x^2+20x+15\right)\)
a)\(\left(x^2-x+2\right)^2+\left(x-2\right)^2=x^4+x^2+4-2x^3-4x+4x^2+x^2-4x+4\)
\(=x^4-2x^3+6x^2-8x+8=\left(x^4-2x^3+2x^2\right)+\left(4x^2-8x+8\right)\)
\(=x^2\left(x^2-2x+2\right)+4\left(x^2-2x+2\right)=\left(x^2-2x+2\right)\left(x^2+4\right)\)
b)\(x^4+6x^3+7x^2-6x+1=\left(x^2\right)^2+\left(3x\right)^2+\left(-1\right)^2+2.x^2.3x\)+2.3x.(-1)+2.x2.(-1)
\(=\left(x^2+3x-1\right)^2\)
a) \(x^2-8y^2+6x+9\)
\(=\left(x^2+6x+9\right)-8y^2\)
\(=\left(x+3\right)^2-\left(\sqrt{8}\cdot y\right)^2\)
\(=\left(x+3+\sqrt{8}y\right)\left(x+3-\sqrt{8}y\right)\)
a: \(x^2-2xy+y^2+3x-3y-4\)
\(=\left(x-y\right)^2+3\left(x-y\right)-4\)
\(=\left(x-y+4\right)\left(x-y-1\right)\)
a)Bạn xem lại đề được không
b)Đặt x^2 ra ngoài
c)Đặt x^3=t rồi quy đồng
d)Bt = -17(x^2-1), còn ẩn phụ gì nữa?
Ừ nhỉ ><
Duong Le Dạ em nhờ chị xóa câu tl này giùm em.