\(x^2-5x+5y-y^2\)
b,
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

13 tháng 10 2018

a/ \(x^2-5x+5y-y^2=\left(x^2-y^2\right)-\left(5x-5y\right)=\left(x-y\right)\left(x+y\right)-5\left(x-y\right)=\left(x-y\right)\left(x+y-5\right)\)

b/ \(3x^2-6xy+3y^2-12z^2=3\left(x^2-2xy+y^2-4z^2\right)=3\left[\left(x^2-2xy+y^2\right)-\left(2x\right)^2\right]=3\left[\left(x-y\right)^2-\left(2x\right)^2\right]=3\left(x-y-2x\right)\left(x-y+2x\right)=3\left(-x-y\right)\left(3x-y\right)\)

c/ \(x^2-2xy+y^2-xz+yz=\left(x^2-2xy+y^2\right)-\left(xz-yz\right)=\left(x-y\right)^2-z\left(x-y\right)=\left(x-y\right)\left(x-y-z\right)\)

d/ \(x^2-x+2y-4y^2=\left(x^2-4y^2\right)-\left(x+2y\right)=\left(x+2y\right)\left(x-2y\right)-\left(x+2y\right)=\left(x+2y\right)\left(x-2y-1\right)\)

e/ \(x^6-y^6=\left(x^3\right)^2-\left(y^3\right)^2=\left(x^3-y^3\right)\left(x^3+y^3\right)\)

13 tháng 10 2018

a) x2 - 5x + 5y - y2

= ( x2 - y2 ) - ( 5x - 5y )

= ( x - y )( x + y ) - 5( x - y )

= ( x - y )( x + y - 5 )

b) 3x2 - 6xy + 3y2 - 12z2

= 3( x2 - 2xy + y2 - 4z2 )

= 3[( x2 - 2xy + y2 ) - 4z2 ]

= 3[( x - y )2 - 4z2 ]

= 3( x - y - 2z )( x - y + 2z )

c) x2 - 2xy + y2 - xz - yz

= ( x2 - 2xy + y2 ) - ( xz - yz )

= ( x - y )2 - z( x - y )

= ( x - y )( x - y - z )

d) x2 - x + 2y - 4y2

= ( x2 - 4y2 ) - ( x - 2y )

= ( x - 2y )( x + 2y ) - ( x - 2y )

= ( x - 2y )(x + 2y - 1 )

e) x6 - y6

= ( x3 )2 - ( y3 )2

= ( x3 - y3 )( x3 + y3 )

= ( x - y )( x2 + xy + y2 )( x + y )( x2 - xy + y2 )

Chúc bạn học tốt hihi

28 tháng 9 2018

a, 3x - 3y = 3( x- y )

b, x2 - x =x(x - 1)

c, 3(x - y) - 5x(y - x)

= 3(x - y) + 5x(x - y)

= ( x - y)(3 + 5x)

d, x(y - 1) - y(y - 1)

= (x - y)(y - 1)

e, 10x(x - y)-8y( y - x)

= 10x(x - y) + 8y(x - y)

= (10y + 8x)(x - y)

f, 2x2 +5x3 +xy

= x(2x + 5x2 + y)

g, 14x2y - 21xy2 +28x2y2

= 7xy(2x - 3y + 4xy)

h, x2 - 3x + 2

= x2 - x - 2x + 2

= x(x - 1)- 2(x - 1)

= (x - 2)(x - 1)

i, x2 - x - 6

x2 + 2x - 3x - 6

x(x + 2) - 3(x + 2)

(x + 2)(x - 3)

k, x2 + 5x+6

= x2 - x + 6x + 6

=x(x - 1) + 6(x + 1)

= x(x - 1) - 6(x - 1)

= (x - 6)(x - 1)

l,x2 - 4x + 3

= x2 - x - 3x + 3

= x(x - 1) - 3(x - 1)

= (x - 3)(x - 1)

m, x2 + 5x +4

= x2 + x + 4x + 4

= x(x + 1) + 4(x + 1)

= (x + 4)(x + 1)

28 tháng 9 2018

Hướng dẫn:

a, b, c, d, e, f, g: Phương pháp phân phối đưa thừa số chung ra ngoài

h, i, k, l, m : Tách hạng tử rồi nhóm

Bạn làm ra, đoạn nào không hiểu có thể inbox riêng để hoàn thành từng câu

1 tháng 10 2018

A=\(x^3-2x^2+x\)

=x.(x2-2x+1)

=x(x-1)2

B=\(2x^2+4x+2-2y^2\)

=\(2\left(x^2+2x+1-y^2\right)\)

=\(2.\left[\left(x+1\right)^1-y^2\right]\)

=\(2\left(x+1-y\right)\left(x+1+y\right)\)

C=\(2xy-x^2-y^2+16\)

=\(-\left(-2xy+x^2+y^2-16\right)\)

=\(-\left[\left(x-y\right)^2-4^2\right]\)

=-(x-y-4)(x-y+4)

D=\(x^3+2x^2y+xy^2-9x\)

=\(x\left(x^2+2xy-y^2-9\right)\)

=\(x.\left[\left(x-y\right)^2-3^2\right]\)

=x.(x-y-3)(x-y+3)

E=\(2x-2y-x^2+2xy-y^2\)

\(=\left(2x-2y\right)-\left(x^2-2xy+y^2\right)\)

=\(2\left(x-y\right)-\left(x-y\right)\left(x-y\right)\)

=(x-y)(2x-2y-x+y)

=(x-y)(x+y)

1 tháng 10 2018

ở câu B:

(x+1)^1 sửa giùm mk thành (x+1)^2

2 tháng 8 2020

Bài làm:

a) \(x^6-6x^4+12x^2-8\)

\(=\left(x^2-2\right)^3\)

b) \(x^2+16-8x=\left(x-4\right)^2\)

c) \(10x-x^2-25=-\left(x-5\right)^2\)

d) \(9\left(a-b\right)^2-4\left(x-y\right)^2\)

\(=\left[3\left(a-b\right)\right]^2-\left[2\left(x-y\right)\right]^2\)

\(=\left(3a-3b-2x+2y\right)\left(3a-3b+2x-2y\right)\)

e) \(\left(x+y\right)^2-2xy+1\)

\(=x^2+2xy+y^2-2xy+1\)

\(=x^2+y^2+1\)

sai sai

2 tháng 8 2020

a.  \(x^6-6x^4+12x^2-8=\left(x^2\right)^3-3\left(x^2\right)^2.2+3x^22-2^3=\left(x^2-2\right)^3\)

b. \(x^2+16-8x=x^2-8x+4^2=\left(x-4\right)^2\)

c. \(10x-x^2-25=10x-x^2-5^2=-\left(x-5\right)^2\)

d. \(9\left(a-b\right)^2-4\left(x-y\right)^2=\left[3\left(x-y\right)-2\left(x+y\right)\right]\left[3\left(x-y\right)+2\left(x+y\right)\right]\)

\(=\left(3x-3y-2x-2y\right)\left(3x-3y+2x+2y\right)=\left(x-5y\right)\left(5x-y\right)\)

e. \(\left(x+y\right)^2-2xy+1=x^2+2xy+y^2-2xy+1=x\left(x+2y\right)-y\left(y+2x\right)+2y^2+1\)

\(=x\left(x+y\right)-y\left(y+x\right)+xy-yx+2y^2+x=\left(x-y\right)\left(x+y\right)+2y^2+x\)

6 tháng 11 2019

\(C1:=3+1-3y\)

\(=4-3y\)

\(C2:\)

\(a.=3x\left(2y-1\right)\)

\(b.=\left(x-y\right)\left(x+y\right)+4\left(x+y\right)\)

\(=\left(x-y+4\right)\left(x+y\right)\)

\(C3:\)

\(a.6x^2+2x+12x-6x^2=7\)

\(14x=7\)

\(x=\frac{1}{2}\)

\(b.\frac{1}{5}x-2x^2+2x^2+5x=-\frac{13}{2}\)

\(\frac{26}{5}x=-\frac{13}{2}\)

\(x=-\frac{13}{2}\times\frac{5}{26}\)

\(x=-\frac{5}{4}\)

3 tháng 7 2020

Bạn Moon làm kiểu gì vậy ?

1) \(\left(3x^2y^2+x^2y^2\right):\left(x^2y^2\right)-3y\)

\(=\left[\left(x^2y^2\right)\left(3+1\right)\right]:\left(x^2y^2\right)-3y\)

\(=4-3y\)

2) a, \(6xy-3x=\left(3x\right)\left(2y-1\right)\)

b, \(x^2-y^2+4x+4y=\left(x+y\right)\left(x-y\right)+4\left(x+y\right)\)

\(=\left(x+y\right)\left(x-y+4\right)\)

3) a,  \(2x\left(3x+1\right)+\left(4-2x\right)3x=7\)

\(< =>6x^2+2x+12x-6x^2=7\)

\(< =>14x=7< =>x=\frac{7}{14}\)

b, \(\frac{1}{2}x\left(\frac{2}{5}-4x\right)+\left(2x+5\right)x=-6\frac{1}{2}\)

\(< =>\frac{x}{2}.\frac{2}{5}-\frac{x}{2}.4x+2x^2+5x=-\frac{13}{2}\)

\(< =>\frac{x}{5}-2x^2+2x^2+5x=-\frac{13}{2}\)

\(< =>\frac{26x}{5}=\frac{-13}{2}\)

\(< =>26x.2=\left(-13\right).5\)

\(< =>52x=-65< =>x=-\frac{65}{52}=-\frac{5}{4}\)

AH
Akai Haruma
Giáo viên
17 tháng 10 2018

a)

\(25x^2-9(x+y)^2=(5x)^2-(3x+3y)^2\)

\(=(5x-3x-3y)(5x+3x+3y)=(2x-3y)(8x+3y)\)

b)

\(x^2-x-2=x^2+x-2x-2=x(x+1)-2(x+1)=(x-2)(x+1)\)

c)

\(3x^2-11x+6=3x^2-9x-2x+6\)

\(=3x(x-3)-2(x-3)=(x-3)(3x-2)\)

d)

\(x^2+5x+8\): biểu thức không phân tích được thành nhân tử

AH
Akai Haruma
Giáo viên
17 tháng 10 2018

e)

\(x^2+8x+7=x^2+x+7x+7\)

\(=x(x+1)+7(x+1)=(x+1)(x+7)\)

g)

\(x^2-6x-16=x^2-6x+9-25\)

\(=(x-3)^2-5^2=(x-3-5)(x-2+5)=(x-8)(x+2)\)

h)

\(4x^2-8x+3=4(x^2-2x+1)-1\)

\(=4(x-1)^2-1=(2x-2)^2-1^2=(2x-2-1)(2x-2+1)\)

\(=(2x-3)(2x-1)\)

i)

\(3x^2-11x+6=3x^2-9x-2x+6\)

\(=3x(x-3)-2(x-3)=(3x-2)(x-3)\)

5 tháng 8 2019

c) \(x^2+y^2+xz+yz+2xy\)

\(=\left(x+y\right)^2+z\left(x+y\right)\)

\(=\left(x+y\right)\left(x+y+z\right)\)

5 tháng 8 2019

b) \(x^3+3x^2-3x-1\)

\(=\left(x^3-1\right)+3x\left(x-1\right)\)

\(=\left(x-1\right)\left(x^2+x+1\right)+3x\left(x-1\right)\)

\(=\left(x-1\right)\left(x^2+4x+1\right)\)

12 tháng 8 2020

a) 3( x - y ) - 5x( y - x )

= 3( x - y ) - 5x[ -( x - y ) ]

= 3( x - y ) + 5x( x - y )

= ( 3 + 5x )( x - y )

b) x3 + 2x2y + xy2 - 9x

= x( x2 + 2xy + y2 - 9 )

= x[ ( x + y )2 - 32 ]

= x( x + y - 3 )( x + y + 3 )

c) 14x2y - 21xy2 + 28x2y2

= 7xy( 2x - 3y + 4xy )

12 tháng 8 2020

                                              Bài giải

\(a,\text{ }3\left(x-y\right)-5x\left(y-x\right)\)

\(=3\left(x-y\right)+5x\left(x-y\right)\)

\(=\left(x-y\right)\left(3+5x\right)\)

\(b,\text{ }x^3+2x^2y+xy^2-9x\)

\(=x\left(x^2+2xy+y^2-9\right)\)

\(=x\left[\left(x+y\right)^2-3^2\right]\)

\(=x\left(x+y+3\right)\left(x+y-3\right)\)

\(c,\text{ }14x^2y-21xy^2+28x^2y\)

\(=7xy\left(2x-3y+4x\right)\)

\(=7xy\left(6x-3y\right)\)

4 tháng 12 2018

a) \(\left(3x-5\right)\left(2x+3\right)-\left(2x-3\right)\left(3x+7\right)-2x\left(x-4\right)\)

\(=\left(6x^2-x-15\right)-\left(6x^2+5x-21\right)-\left(2x^2-8x\right)\)

\(=6x^2-x-15-6x^2-5x+21-2x^2+8x\)

\(=-2x^2+2x+6\)

\(=-2\left(x^2-x-3\right)\)

b) \(\left(x^2+2\right)^2-\left(x+2\right)\left(x-2\right)\left(x^2+4\right)\)

\(=\left(x^2+2\right)^2-\left(x^2-4\right)\left(x^2+4\right)\)

\(=\left(x^2+2\right)^2-\left(x^4-16\right)\)

\(=\left(x^4+4x^2+4\right)-\left(x^4-16\right)\)

\(=x^4+4x^2+4-x^4+16\)

\(=4x^2+20\)

\(=4\left(x^2+5\right)\)

c) \(\left(2x-y\right)^2-2\left(x+3y\right)^2-\left(1+3x\right)\left(3x-1\right)\)

\(=\left(4x^2-4xy+y^2\right)-2\left(x^2+6xy+9y^2\right)-\left(9x^2-1\right)\)

\(=4x^2-4xy+y^2-2x^2-16xy-18y^2-9x^2+1\)

\(=-7x^2-20xy-17y^2+1\)

d) \(\left(x^2-1\right)^3-\left(x^4+x^2+1\right)\left(x^2-1\right)\)

\(=\left(x^6-3x^4+3x^2-1\right)-\left(x^6-1\right)\)

\(=x^6-3x^4+3x^2-1-x^6+1\)

\(=-3x^4+3x^2\)

\(=-3x^2\left(x^2-1\right)\)

\(=-3x^2\left(x-1\right)\left(x+1\right)\)

e) \(\left(2x-1\right)^2-2\left(4x^2-1\right)+\left(2x+1\right)^2\)

\(=\left(2x-1\right)^2-2\left(2x-1\right)\left(2x+1\right)+\left(2x+1\right)^2\)

\(=\left[\left(2x-1\right)-\left(2x+1\right)\right]^2\)

\(=\left(2x-1-2x-1\right)^2\)

\(=\left(-2\right)^2=4\)

g) \(\left(x-y+z\right)^2+\left(y-z\right)^2-2\left(x-y+z\right)\left(z-y\right)\)

\(=\left(x-y+z\right)^2+2\left(x-y+z\right)\left(y-z\right)+\left(y-z\right)^2\)

\(=\left(x-y+z+y+z\right)^2\)

\(=\left(x+2z\right)^2\)

h) \(\left(2x+3\right)^2+\left(2x+5\right)^2-\left(4x+6\right)\left(2x+5\right)\)

\(=\left(2x+3\right)^2-2\left(2x+3\right)\left(2x+5\right)+\left(2x+5\right)^2\)

\(=\left[\left(2x+3\right)-\left(2x+5\right)\right]^2\)

\(=\left(2x+3-2x-5\right)^2\)

\(=\left(-2\right)^2=4\)

i) \(5x^2-\dfrac{10x^3+15x^2-5x}{-5x}-3\left(x+1\right)\)

\(=5x^2-\dfrac{-5x\left(-2x^2-3x+1\right)}{-5x}-3\left(x+1\right)\)

\(=5x^2-\left(-2x^2-3x+1\right)-3\left(x+1\right)\)

\(=5x^2+2x^2+3x-1-3x-3\)

\(=7x^2-4\)

11 tháng 12 2018

\(x^2-2xy+y^2-z^2=\left(x-y\right)^2-z^2=\left(x-y-z\right)\left(x-y+z\right)\)

\(3x^2+6xy+3y^2-3z^2=3\left(x^2+2xy+y^2-z^2\right)=3.\left[\left(x+y\right)^2-z^2\right]=3.\left(x+y-z\right)\left(x+y+z\right)\)

\(3x^2-3xy-5x+5y=3x\left(x-y\right)-5\left(x-y\right)=\left(x-y\right)\left(3x-5\right)\)