Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Câu a trước đi ạ ^^
a) 7x - 6x2 - 2
= - 6x2 + 7x - 2
= (- 6x2 + 3x) + (4x - 2)
= 3x (- 2x + 1) + 2 (2x-1)
= - 3x ( 2x -1) + 2 (2x - 1)
= ( 2x -1 ) ( - 3x +2 )
a) Ta có : a2x + a2y - 7x - 7y
= a2(x + y) - (7x + 7y)
= a2(x + y) - 7(x + y)
= (x + y)(a2 - 7)
b) Ta có : x3 + y(1 - 3x2) + x(3x2 - 1) - y3
= x3 - y(3x2 - 1) + x(3x2 - 1) - y3
= x3 - y3 + [x(3x2 - 1) - y(3x2 - 1)]
= x3 - y3 - (3x2 - 1)(x - y)
= (x - y)(x2 + xy + y2) - (3x2 - 1)(x - y)
= (x - y)[(x2 + xy + y2) - (3x2 - 1)]
= (x - y)(x2 + xy + y2 - 3x2 + 1)
= (x - y)(-2x2 + xy + y2 + 1)
bài 2:a. \(5x.\left(y^2-2yz+z^2\right)\)
\(=5x.\left(y-z\right)^2\) .......k bít dc chưa
b.\(\left(x^2y-x\right)+\left(xy^2-y\right)\)
\(=x.\left(xy-1\right)+y.\left(xy-1\right)\)
\(=\left(xy-1\right).\left(x+y\right)\)
Bạn chuyển tất cả hạng tử từ vế phải sang vế trái ta được
\(^{x^2+5\text{x}^3+x^2y=5\text{x}^3+x^2y}\)
\(x^2+5\text{x}^3+x^2y-5\text{x}^3-x^2y=0\)
Rút gọn ta được
\(x^2=0\)
\(=>x=0\)
tick cho mình nha
\(5x^2-x+y-5y^2\)
\(=\left(5x^2-5y^2\right)-\left(x-y\right)\)
\(=5\left(x^2-y^2\right)-\left(x-y\right)\)
\(=5\left(x-y\right)\left(x+y\right)-\left(x-y\right)\)
\(=\left(x-y\right)\left[5\left(x+y\right)-1\right]\)
\(=\left(x-y\right)\left(5x+5y-1\right)\)
bài này 1h rùi,chắc chờ tui ngủ dậy làm;
= (x+y)3 - (x+y) + xy(x+y) =
= (x+y)((x+y)2 -1 +xy)) = (x+y)(x2 +3xy +y2 -1)
a) \(x^2+5x+6=x^2+2x+3x+6=x\left(x+2\right)+3\left(x+2\right)=\left(x+3\right)\left(x+2\right)\)
b) \(x^2-4x+3=x^2-x-3x+3=x\left(x-1\right)-3\left(x-1\right)=\left(x-3\right)\left(x-1\right)\)
c) \(x^2+5x+4=x^2+x+4x+4=x\left(x+1\right)+4\left(x+1\right)=\left(x+4\right)\left(x+1\right)\)
d) \(x^2-x-6=x^2+2x-3x-6=x\left(x+2\right)-3\left(x+2\right)=\left(x-3\right)\left(x+2\right)\)
2 \(x^7+x^5+1=x^7+x^6+x^5-x^6+1=x^5\left(x^2+x+1\right)-\left(x^6-1\right)=x^5\left(x^2+x+1\right)-\left(x^3-1\right)\left(x^3+1\right)\)
\(=x^5\left(x^2+x+1\right)-\left(x-1\right)\left(x^2+x+1\right)\left(x^3+1\right)=\left(x^2+x+1\right)\left(x^5-\left(x-1\right)\left(x^3+1\right)\right)\)
\(=\left(x^2+x+1\right)\left(x^5-x^4+x^3-x+1\right)\)
1 \(x^3-5x^2+3x+9=x^3+x^2-6x^2-6x+9x+9=x^2\left(x+1\right)-6x\left(x+1\right)+9\left(x+1\right)\)
\(=\left(x^2-6x+9\right)\left(x+1\right)=\left(x-3\right)^2\left(x+1\right)\)
\(b,x^2+4x+3=x^2+3x+x+3.\)
\(=x\left(x+3\right)+\left(x+3\right)=\left(x+1\right)\left(x+3\right)\)
\(c,16x-5x^2-3=x-5x^2+15x-3\)
\(=x\left(1-5x\right)+3\left(5x-1\right)\)
\(=\left(x+3\right)\left(1-5x\right)\)
\(d,x^4+4=x^4+4x^2+4-4x^2=\left(x+2\right)^2-4x^2\)
\(=\left(x^2+2-2x\right)\left(x^2+2+2x\right)\)