Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
x^3-2x^2-4xy^2+x
=x(x^2-2x-4y^2+1)
=x[(x^2-2x+1)-4y^2]
=x[(x-1)^2-4y^2]
=x(x-1-2y)(x-1+2y)
Phân tích đa thức thành nhân tử
x3-2x2-4xy2+x
= x (x2-2x-4y2+1)
b = x.(x2 + 6x + 9 - 4y2 ) =x.((x+3)2 -4y2 )= x.(x+3-2y).(x+3+2y)
c = (x2 - 2x)+(2y-xy) = x.(x-2) +y.(2-x)= x.(x-2) + y.(-x+2)= x.(x-2) - y.(x-2) = (x-y).(x-2)
d = (x2 +1)2 - 4x2 = (x2 + 1 - 2x).(x2 +1 +2x) = (x-1)2 . (x+1)2
a = (7x)2 - (0.5y)2 = (7x - 0,5y).(7x+0,5y)
3 - 6x + 3x^2
= 3 ( 1 - 2x + x^2 )
= 3( 1 - x )^2
b, x^2 - 4xy + 4y^2
= ( x)^2 + 2.x.2y + (2y)^2
= ( x+ 2y)^2
a,81-(x^2-4xy+4y^2)=81-(x-2y)^2=(9-(x-2y))(9+(x-2y))=(9-x+2y)(9+x-2y)
b,x^3+y^3+z^3-3xyz=(x^3+3(x^2)y+3x(y^2)+y^3)+z^3-3xyz-3xy(x+y)
=((x+y)^3+3((x+y)^2)z+3(x+y)z^2+z^3)-(3xyz-3xy(x+y))-3(x+y)z(x+y+z)
=(x+y+z)^3-3(x+y)z(x+y+z)-3xy(x+y+z)=(x+y+z)((x+y+z)^2-3(x+y)z-3xy)
=(x+y+z)(x^2+y^2+z^2+2xy+2yz+2xz-3xy-3yz-3xz)=(x+y+z)(x^2+y^2+z^2-xy-yz-xz)
\(x^3+y^3+z^3-3xyz\)
\(=\left(x+y\right)^3-3xy\left(x+y\right)+z^3-3xyz\)
\(=\left(x+y+z\right)\left[\left(x+y\right)^2-\left(x+y\right)z+z^2\right]-3xy\left(x+y+z\right)\)
\(=\left(x+y+z\right)\left(x^2+y^2+z^2-xy-yz-zx\right)\)
=x(9x^2-4y^2+4y-1)
=x(9x^2-(2y-1)^2)
=x(3x-2y+1)(3x+2y-1)