K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

20 tháng 9 2020

\(=\left(\sqrt{2x}\right)^2-\left(\sqrt{y}\right)^2\)

\(=\left(\sqrt{2x}-\sqrt{y}\right)\left(\sqrt{2x}+\sqrt{y}\right)\)

28 tháng 9 2024

  3\(x\) - y

= (\(\sqrt{3x}\))2 - (\(\sqrt{y}\))2

= (\(\sqrt{3x}\) - \(\sqrt{y}\)).(\(\sqrt{3x}\) + \(\sqrt{y}\))

4 tháng 8 2018

1)  \(x\sqrt{x}+y\sqrt{y}=\left(\sqrt{x}+\sqrt{y}\right)\left(x-\sqrt{xy}+y\right)\)

2) \(x-3=\left(\sqrt{x}-\sqrt{3}\right)\left(\sqrt{x}+\sqrt{3}\right)\)

3) \(a+b=a-\left(-b\right)=\left(\sqrt{a}-\sqrt{-b}\right)\left(\sqrt{a}+\sqrt{-b}\right)\)
p/s: chúc bạn học tốt

20 tháng 9 2020

x - 3 = ( √x )2 - ( √3 )2 = ( √x - √3 )( √x + √3 ) < với x > 0 >

20 tháng 9 2020

            Bài làm :

Ta có :

\(x-3=\left(\sqrt{x}\right)^2-\left(\sqrt{3}\right)^2=\left(\sqrt{x}-\sqrt{3}\right)\left(\sqrt{x}+\sqrt{3}\right)\)

4 tháng 10 2020

a) \(\sqrt{a^3}-\sqrt{b^3}+\sqrt{a^2b}-\sqrt{ab^2}\)

\(=a\sqrt{a}-b\sqrt{b}+a\sqrt{b}-b\sqrt{a}\)

\(=\left(\sqrt{a}-\sqrt{b}\right)\left(a+\sqrt{ab}+b\right)-\left(\sqrt{a}-\sqrt{b}\right)\sqrt{ab}\)

\(=\left(\sqrt{a}-\sqrt{b}\right)\left(a+\sqrt{ab}+b-\sqrt{ab}\right)\)

\(=\left(\sqrt{a}-\sqrt{b}\right)\left(a+b\right)\)

4 tháng 10 2020

b) \(x-y+\sqrt{xy^2}-\sqrt{y^3}\)

\(=\left(x-y\right)+\left(y\sqrt{x}-y\sqrt{y}\right)\)

\(=\left(\sqrt{x}-\sqrt{y}\right)\left(\sqrt{x}+\sqrt{y}\right)+y\left(\sqrt{x}-\sqrt{y}\right)\)

\(=\left(\sqrt{x}-\sqrt{y}\right)\left(\sqrt{x}+\sqrt{y}+y\right)\)

5 tháng 7 2019

a) \(=9x-9\sqrt{xy}+4\sqrt{xy}-4y\)

\(=\left(9x-9\sqrt{xy}\right)+\left(4\sqrt{xy}-4y\right)\)

\(=9\sqrt{x}\left(\sqrt{x}-\sqrt{y}\right)+4\sqrt{y}\left(\sqrt{x}-\sqrt{y}\right)\)

\(=\left(\sqrt{x}-\sqrt{y}\right)\left(9\sqrt{x}+4\sqrt{y}\right)\)

b)\(=\left(xy+\sqrt{x}.y\right)+\left(\sqrt{x}+1\right)\)

 \(=\sqrt{x}y\left(\sqrt{x}+1\right)+\left(\sqrt{x}+1\right)\)

\(=\left(\sqrt{x}+1\right)\left(\sqrt{x}.y+1\right)\)

5 tháng 7 2019

Thank kill cô :))

24 tháng 3 2015

Thế này có đúng ko nhỉ \(a+b=\left(\sqrt[3]{a}\right)^3+\left(\sqrt[3]{b}\right)^3\) sau đó dùng hằng đẳng thức x3 + y3

2 tháng 10 2016

\(4\left(1+x\right)\left(1+y\right)\left(1+x+y\right)-3x^2y^2=4\left(1+x+y+xy\right)\left(1+x+y\right)-3x^2y^2\)

\(=4\left(1+x+y\right)^2+4xy\left(1+x+y\right)+x^2y^2-4x^2y^2\)

\(=\left[2\left(1+x+y\right)+xy\right]^2-\left(2xy\right)^2=\left(2+2x+2y+xy-2xy\right)\left(2+2x+2y+xy+2xy\right)\)

\(=\left(2+2x+2y-xy\right)\left(2+2x+2y+3xy\right)\)

2 tháng 10 2016

giúp mình câu khác được ko? câu này mình biết làm òi

7 tháng 5 2015

a) Viết lại phương trình như sau: x2 - 3x + 2 - y - y2 = 0

Coi x là ẩn; y là tham số 

ta có: \(\Delta\) = (-3)2 - 4(2 - y - y2 ) = 4y2 + 4y + 1 = (2y + 1)2 \(\ge\) 0 với mọi y

=> phương trình đã cho luôn có nghiệm là : \(x_1=\frac{3+2y+1}{2}=y+2;x_2=\frac{3-2y-1}{2}=1-y\)

b) x = y + 2 và x = 1 - y thoả mãn phương trình

=> y = x - 2 và y = 1 - x thoả mãn phương trình

c) do x = y + 2 và x = 1 - y là nghiệm của phương trình x2 - 3x + 2 - y - y2 = 0

=> x2 - 3x + 2 - y - y2 = (x - y  - 2). (x - 1+ y)

*) Chú ý: Nếu x1; x2 là nghiệm của ax2 + bx + c = 0 =>  ax2 + bx + c = a.(x - x1)(x - x2

2 tháng 3 2016

Help!!

(x2+x+1)(x2+x+2)=12

x(x+1)(x2+x+1)=42

(x2+x+1)2= 3(x4+x2+1)