Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) 27x^3 –27x^2 +18x –4
= 27x^3 –9x^2–18x^2+6x + 12x –4
= 9x^2 (3x–1) – 6x (3x–1) +4(3x–1)
= (3x-1) (9x^2–6x+4)
b)2x^3–2x^2+5x+3
= 2x^3+x^2–2x^2–x+6+3
= x^2(2x+1)-x^2(2x+1)+3(2x+1)
= (2x+1) 3
c) 2x^4 + 5x^3+13x^2+25x+15
=2x^3(x+1)+3x^2(x+1)+10x(x+1)+15(x+1)
=(x+1)(x^2(2x+3)+5(2x+3))
=(x+1)(2x+3)(x^2+5)
a) Hình như phân tích không được
b) \(2x^4+5x^3+13x^2+25x+15\)
\(=x^3+1+2x^4+2x^3+13x^2+13x+12x+12+2+2x^3\)
\(=\left(x^3+1\right)+\left(2x^4+2x^3\right)+\left(13x^2+13x\right)+\left(12x+12\right)+2\left(1+x^3\right)\)
\(=\left(x+1\right)\left(x^2-x+1\right)+2x^3\left(x+1\right)+13x\left(x+1\right)+12\left(x+1\right)+2\left(x+1\right)\left(x^2-x+1\right)\)
\(=\left(x+1\right)\left(x^2-x+1+2x^3+13x+12+2x^2-2x+2\right)\)
\(=\left(x+1\right)\left(3x^2+10x+15+2x^3\right)\)
\(=\left(x+1\right)\left[x^2\left(2x+3\right)+5\left(2x+3\right)\right]\)
\(=\left(x+1\right)\left(x^2+5\right)\left(2x+3\right)\)
\(b,=x^4-2x^3-x^3+2x^2+3x^2-6x-3x+6\\ =\left(x-2\right)\left(x^3-x^2+3x-3\right)\\ =\left(x-2\right)\left(x-1\right)\left(x^2+3\right)\\ c,=x^4-2x^3+4x^3-8x^2+4x^2-8x+3x-6\\ =\left(x-2\right)\left(x^3+4x^2+4x+3\right)\\ =\left(x-2\right)\left(x^3+3x^2+x^2+3x+x+3\right)\\ =\left(x-2\right)\left(x+3\right)\left(x^2+x+1\right)\)
b) 3x4-3x3+9x3-9x2-24x2+24x-48x+48
=3x3(x-1)+9x2(x-1)-24x(x-1)-48(x-1)
=(x-1)(3x3+9x2-24x-48)
=3(x-1)(x3+3x2-8x-16)
a: Ta có: \(-3x^4+20x^3-35x^2-10x+48\)
\(=-\left(3x^4-20x^3+35x^2+10x-48\right)\)
\(=-\left(3x^4-9x^3-11x^3+33x^2+2x^2-6x+16x-48\right)\)
\(=-\left(x-3\right)\left(3x^3-11x^2+2x+16\right)\)
\(=-\left(x-3\right)\left(3x^3-6x^2-5x^2+10x-8x+16\right)\)
\(=-\left(x-3\right)\left(x-2\right)\left(3x^2-5x-8\right)\)
\(=-\left(x-3\right)\left(x-2\right)\left(3x-8\right)\left(x+1\right)\)
b: Ta có: \(-\left(2x^4+7x^3+x^2-7x-3\right)\)
\(=-\left(2x^4-2x^3+9x^3-9x^2+10x^2-10x+3x-3\right)\)
\(=-\left(x-1\right)\left(2x^3+9x^2+10x+3\right)\)
\(=-\left(x-1\right)\left(2x^3+2x^2+7x^2+7x+3x+3\right)\)
\(=-\left(x-1\right)\left(x+1\right)\left(2x^2+7x+3\right)\)
\(=-\left(x-1\right)\left(x+1\right)\cdot\left(x+3\right)\left(2x+1\right)\)
a: \(=2x^4+2x^3+3x^3+3x^2+10x^2+10x+15x+15\)
\(=\left(x+1\right)\left(2x^3+3x^2+10x+15\right)\)
\(=\left(x+1\right)\left(2x+3\right)\left(x^2+5\right)\)
b: \(x^4+3x^3+x^2-12x-20\)
\(=x^4-2x^3+5x^3-10x^2+11x^2-22x+10x-20\)
\(=\left(x-2\right)\left(x^3+5x^2+11x+10\right)\)
\(=\left(x-2\right)\left(x^3+2x^2+3x^2+6x+5x+10\right)\)
\(=\left(x-2\right)\left(x+2\right)\left(x^2+3x+5\right)\)
c: \(=\left(a+b-a+b\right)\left[\left(a+b\right)^2+\left(a+b\right)\left(a-b\right)+\left(a-b\right)^2\right]\)
\(=2b\left(a^2+2ab+b^2+a^2-b^2+a^2-2ab+b^2\right)\)
\(=2b\left(3a^2+b^2\right)\)
d: \(=\left(x+y\right)^3+z^3-3xy\left(x+y\right)-3xyz\)
\(=\left(x+y+z\right)\left(x^2+2xy+y^2-xz-yz+z^2\right)-3xy\left(x+y+z\right)\)
\(=\left(x+y+z\right)\left(x^2+y^2+z^2-xy-yz-xz\right)\)
f: \(x^3-19x-30\)
\(=x^3-5x^2+5x^2-25x+6x-30\)
\(=\left(x-5\right)\left(x^2+5x+6\right)\)
\(=\left(x-5\right)\left(x+2\right)\left(x+3\right)\)
a) \(x^2-2x-15\)
\(\Leftrightarrow x^2-2x+1-16\)
\(\Leftrightarrow\left(x-1\right)^2-4^2\)
\(\Leftrightarrow\left(x-5\right)\left(x-3\right)\)
\(a,x^2-2x-15=\left(x^2-2x+1\right)-16.\)
\(=\left(x-1\right)^2-4^2\)
\(=\left(x-5\right)\left(x+3\right)\)
\(\text{e) 2x^4 + 5x^3+13x^2+25x+15 }\)
\(\text{=2x^3(x+1)+3x^2(x+1)+10x(x+1)+15(x+1) }\)
\(\text{=(x+1)[x^2(2x+3)+5(2x+3)]}\)
\(\text{=(x+1)(2x+3)(x^2+5)}\)
\(2x^4+5x^3+13x^2+25x+15\)
\(=2x^4+2x^3+3x^3+3x^2+10x^2+10x+15x+15\)
\(=2x^3\left(x+1\right)+3x^2\left(x+1\right)+10x\left(x+1\right)+15\left(x+1\right)\)
\(=\left(x+1\right)\left(2x^3+3x^2+10x+15\right)\)