Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) x4 - 10x3 - 15x2 + 20x + 4
= x4 + 2x3 - 12x3 - 24x2 + 9x2 + 18x + 2x + 4
= x3(x + 2) - 12x2(x + 2) + 9x(x + 2) + 2(x + 2)
= (x + 2)(x3 - 12x2 + 9x + 2)
b)
2x4 - 5x3 - 27x2 + 25x + 50
= 2x3(x - 2) - x2(x - 2) - 25x(x - 2) - 25(x - 2)
= (x - 2)(2x3 - x2 - 25x - 25)
c)\(3x^4+6x^3-33x^2-24x+48\)
\(=3\left(x^4+2x^3-11x^2-8x+16\right)\)
\(=3\left(x^4-x^3-4x^2+3x^3-3x^2-12x-4x^2+4x+16\right)\)
\(=3\left(x^2\left(x^2-x-4\right)+3x\left(x^2-x-4\right)-4\left(x^2-x-4\right)\right)\)
\(=3\left(x^2+3x-4\right)\left(x^2-x-4\right)\)
\(=3\left(x^2-x+4x-4\right)\left(x^2-x-4\right)\)
\(=3\left[x\left(x-1\right)+4\left(x-1\right)\right]\left(x^2-x-4\right)\)
\(=3\left(x-1\right)\left(x+4\right)\left(x^2-x-4\right)\)
\(a.=x^3-2x^2+x^2-2x+x-2=x^2\left(x-2\right)+x\left(x-2\right)+\left(x-2\right)=\left(x-2\right)\left(x^2+x+2\right)\)
b.\(=2x^3+x^2-2x^2-x-2x-1=x^2\left(2x+1\right)-x\left(2x-1\right)-\left(2x-1\right)\)\(=\left(2x-1\right)\left(x^2-x-1\right)\)
c.\(3x^3-x^2+6x^2-2x-12x+4=x^2\left(3x-1\right)+2x\left(3x-1\right)-4\left(3x-1\right)\)\(=\left(3x-1\right)\left(x^2+2x-4\right)\)
d.\(3x^3-x^2-6x^2+2x+15x-5=x^2\left(3x-1\right)-2x\left(3x-1\right)+5\left(3x-1\right)\)\(=\left(3x-1\right)\left(x^2-2x+5\right)\)
t i c k cho mình nha
\(b,=x^4-2x^3-x^3+2x^2+3x^2-6x-3x+6\\ =\left(x-2\right)\left(x^3-x^2+3x-3\right)\\ =\left(x-2\right)\left(x-1\right)\left(x^2+3\right)\\ c,=x^4-2x^3+4x^3-8x^2+4x^2-8x+3x-6\\ =\left(x-2\right)\left(x^3+4x^2+4x+3\right)\\ =\left(x-2\right)\left(x^3+3x^2+x^2+3x+x+3\right)\\ =\left(x-2\right)\left(x+3\right)\left(x^2+x+1\right)\)
a)x^2-(a+b)x+ab
= x^2 - ax - bx + ab
= (x^2 - ax) - (bx - ab)
= x(x-a) - b(x-a)
= (x-b)(x-a)
b)7x^3-3xyz-21x^2+9z
=
c)4x+4y-x^2(x+y)
= 4(x + y) - x^2(x+y)
= (4-x^2) (x+y)
= (2-x)(2+x)(x+y)
d) y^2+y-x^2+x
= (y^2 - x^2) + (x+y)
= (y-x)(y+x)+ (x+y)
= (y-x+1) (x+y)
e)4x^2-2x-y^2-y
= [(2x)^2 - y^2] - (2x +y)
= (2x-y)(2x+y) - (2x+y)
= (2x -y -1)(2x+y)
f)9x^2-25y^2-6x+10y
=
a) \(x^4+3x^3-7x^2-27x-18\)
\(=\left(x^4+3x^3+2x^2\right)-\left(9x^2-27x-18\right)\)
\(=x^2\left(x^2+3x+2\right)-9\left(x^2+3x+2\right)=\left(x^2+x+2x+2\right)\left(x^2-9\right)\)
\(=\left(x+1\right)\left(x+2\right)\left(x-3\right)\left(x+3\right)\)
b) \(x^4+5x^3-7x^2-41x-30\)
\(=\left(x^4+2x^3-15x^2\right)+\left(3x^3+6x^2-45x\right)+\left(2x^2+4x-30\right)\)
\(=x^2\left(x^2+2x-15\right)+3x\left(x^2+2x-15\right)+2\left(x^2+2x-15\right)\)
\(=\left(x^2+2x-15\right)\left(x^2+3x+2\right)=\left(x^2+5x-3x-15\right)\left(x^2+x+2x+2\right)\)
\(=\left(x+5\right)\left(x-3\right)\left(x+1\right)\left(x+2\right)\)
c) \(x^6-14x^4+49x^2-36\)
\(=\left(x^6-9x^4\right)+\left(-5x^4+45x^2\right)+\left(4x^2-36\right)\)
\(=x^4\left(x^2-9\right)-5x^2\left(x^2-9\right)+4\left(x^2-9\right)\)
\(=\left(x^2-9\right)\left(x^4-5x^2+4\right)=\left(x^2-9\right)\left(x^4-4x^2-x^2+4\right)\)
\(=\left(x^2-1\right)\left(x^2-4\right)\left(x^2-9\right)=\left(x-1\right)\left(x+1\right)\left(x-2\right)\left(x+2\right)\left(x-3\right)\left(x+3\right)\)
a: x^3-7x-6
=x^3-x-6x-6
=x(x-1)(x+1)-6(x+1)
=(x+1)(x^2-x-6)
=(x-3)(x+2)(x+1)
b: =2x^3+x^2-2x^2-x+6x+3
=x^2(2x+1)-x(2x+1)+3(2x+1)
=(2x+1)(x^2-x+3)
c: =2x^3-3x^2-2x^2+3x+2x-3
=x^2(2x-3)-x(2x-3)+(2x-3)
=(2x-3)(x^2-x+1)
d: =2x^3+x^2+2x^2+x+2x+1
=(2x+1)(x^2+x+1)
e: =3x^3+x^2-3x^2-x+6x+2
=(3x+1)(x^2-x+2)
f: =27x^3-9x^2-18x^2+6x+12x-4
=(3x-1)(9x^2-6x+4)
a) \(x^3-7x-6\)
\(=x^3-x-6x-6\)
\(=\left(x^3-x\right)-\left(6x+6\right)\)
\(=x\left(x^2-1\right)-6\left(x+1\right)\)
\(=x\left(x+1\right)\left(x-1\right)-6\left(x+1\right)\)
\(=\left(x+1\right)\left(x^2-x-6\right)\)
b) \(2x^3-x^2+5x+3\)
\(=2x^3+x^2-2x^2-x+6x+3\)
\(=\left(2x^3+x^2\right)-\left(2x^2+x\right)+\left(6x+3\right)\)
\(=x^2\left(2x+1\right)-x\left(2x+1\right)+3\left(2x+1\right)\)
\(=\left(x^2-x+3\right)\left(2x+1\right)\)
c) \(2x^3-5x^2+5x+1\)
\(=2x^3-3x^2-2x^2+3x+2x-3\)
\(=\left(2x^3-3x^2\right)-\left(2x^2-3x\right)+\left(2x-3\right)\)
\(=x^2\left(2x-3\right)-x\left(2x-3\right)+\left(2x-3\right)\)
\(=\left(x^2-x+1\right)\left(2x-3\right)\)
d) \(2x^3+3x^2+3x+1\)
\(=2x^3+x^2+2x^2+x+2x+1\)
\(=\left(2x^3+x^2\right)+\left(2x^2+x\right)+\left(2x+1\right)\)
\(=x^2\left(2x+1\right)+x\left(2x+1\right)+\left(2x+1\right)\)
\(=\left(2x+1\right)\left(x^2+x+1\right)\)
e) \(3x^3-2x^2+5x+2\)
\(=3x^3+x^2-3x^2-x+6x+2\)
\(=\left(3x^3+x^2\right)-\left(3x^2+x\right)+\left(6x+2\right)\)
\(=x^2\left(3x+1\right)-x\left(3x+1\right)+2\left(3x+1\right)\)
\(=\left(3x-1\right)\left(x^2-x+2\right)\)
f) \(27x^3-27x^2+18x-4\)
\(=27x^3-9x^2-18x^2+6x+12x-4\)
\(=\left(27x^3-9x^2\right)-\left(18x^2-6x\right)+\left(12x-4\right)\)
\(=9x^2\left(3x-1\right)-6x\left(3x-1\right)+4\left(3x-1\right)\)
\(=\left(3x-1\right)\left(9x^2-6x+4\right)\)
b) 3x4-3x3+9x3-9x2-24x2+24x-48x+48
=3x3(x-1)+9x2(x-1)-24x(x-1)-48(x-1)
=(x-1)(3x3+9x2-24x-48)
=3(x-1)(x3+3x2-8x-16)