Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(x^8+x^7+1\)
\(=\left(x^8-x^6+x^5-x^3+x^2\right)+\left(x^7-x^5+x^4-x^2+x\right)+\left(x^6-x^4+x^3-x+1\right)\)
\(=x^2\left(x^6-x^4+x^3-x+1\right)+x\left(x^6-x^4+x^3-x+1\right)+\left(x^6-x^4+x^3-x+1\right)\)
\(=\left(x^2+x+1\right)\left(x^6-x^4+x^3-x+1\right)\)
a, x8 + x7 + 1
=x2 (x6 - 1) + x (x6 - 1) +(x2 + x + 1)
= (x6 _ 1)(x2 + x) + (x2 + x +1)
= (x3 - 1)(x3 + 1)( x2 + x) + (x2 + x +1)
=(x - 1)(x2 + x +1)( x2 + x) + (x2 + x +1)
=(x2 + x +1)((x - 1)( x2 + x) +1)
=(x2 + x +1)(x3 + 1)
b, x5 - x4-1
c, x7+x5 + 1
d,x8 + x4 +1
Chú ý: Các đa thức có dạng: x3m+1+x3n+2+1 như x7+x2+1; x7+x5+1; x8 + x4 +1;
x5+x+1; x8+x+1 đều có nhân tử chung là x2 + x +1
Các phần còn lại tương tự nhé!!!
a, b sai đề nhé , sửa lại :
\(a,x^7+x^5+1=x^7+x^6+x^5-x^6+1=....\)
\(b,x^5+x+1=x^5-x^2+x^2+x+1=....\)
\(c,x^{11}+x+1=x^{11}-x^8+x^8-x^5+x^5-x^2+x^2+x+1=...\)
\(d,x^8+x^7+1=x^8+x^7+x^6-x^6+1=...\)
\(e,x^5+x^4+2x^2-1\)
Câu e tớ chịu , các câu trên tớ chỉ cho cậu hướng tách các hạng tử thôi, để cậu dễ dàng nhóm các nhân tử chung là \(x^2+x+1\), câu nào chưa làm được nữa thì để tớ giải rõ hơn nha
a, \(x^8+x^7+1\)= \(\left(x^2+x+1\right)\left(x^6-x^4+x^3-x+1\right)\)
\(b,x^5-x^4-1\)\(=\left(x^2-x+1\right)\left(x^3-x+1\right)\)
\(c,x^7+x^5+1\) = \(\left(x^2+x+1\right)\left(x^5-x^4+x^3-x+1\right)\)
\(d,x^8+x^4+1=\left(x^2-x+1\right)\left(x^2+x+1\right)\left(x^4-x^2+1\right)\)
a, x8+x7+1= (x2+x+1)(x6−x4+x3−x+1)
b,x5−x4−1=(x2−x+1)(x3−x+1)
c,x7+x5+1 = (x2+x+1)(x5−x4+x3−x+1)
d,x8+x4+1=(x2−x+1)(x2+x+1)(x4−x2+1)
\(a,x^4+64=\left(x^4+16x^2+64\right)\)
\(=\left(x^2+8\right)^2-\left(4x\right)^2\)
\(=\left(x^2-4x+8\right).\left(x^2+4x+8\right)\)
\(b,x^5+x+1\)
\(=\left(x^2+x+1\right).\left(x^3-x^2+1\right)\)
...
a) Ta có: x12 + 4
= x12 + 4x6 + 4 - 4x6
= (x6 + 2)2 - (2x3)2
= (x6 + 2 - 2x3).(x6 + 2 + 2x3)
= (x6 - 2x3 + 2).(x6 + 2x3 + 2)
Câu a, b, c :Câu hỏi của Nguyễn Tiến Đạt - Toán lớp 8 - Học toán với OnlineMath
Câu d, e, f: Câu hỏi của Trịnh Ánh My - Toán lớp 8 - Học toán với OnlineMath
b) x7 + x2 + 1 = (x7 – x) + (x2 + x + 1)
= x.(x6 – 1) + (x2 + x +1)
= x.(x3 - 1).(x3 +1) + (x2 + x +1)
= x.(x-1).(x2 + x +1).(x3 +1) + (x2 + x +1)
= (x2 + x +1).[x.(x-1).(x3 +1) + 1]
= (x2 + x +1).[(x2-x).(x3 +1) + 1]
= (x2 + x +1).(x5-x4 + x2 -x + 1
\(h\left(x\right)=x^7+x^5+1=x^7+x^6+x^5-x^6+1=x^5\left(x^2+x+1\right)-\left(x^3+1\right)\left(x^3-1\right)\)
\(=x^5\left(x^2+x+1\right)-\left(x^3+1\right)\left(x-1\right)\left(x^2+x+1\right)=\left(x^2+x+1\right)\left(x^5-x^4+x^3-x+1\right)\)
a) x^3 - 7x - 6
= x^3 - x - 6x - 6
= x(x^2 - 1 ) - 6 (x + 1 )
= x(x-1)(x+1) - 6 ( x + 1 )
= ( x+ 1 ) [ x(x-1) - 6 ]
= ( x + 1 )(x^2 - x - 6 )
= ( x+ 1 ) ( x^2 - 3x + 2x - 6 )
= ( x+ 1 ) [ x(x-3) + 2 ( x- 3 )]
=(x+1)(x+2)(x-3)
b) x^3 - x^2 - 14x + 24
= x^3 - 3x^2 + 2x^2 - 6x - 8x + 24
= x^2 ( x - 3 ) + 2x(x-3) - 8 ( x- 3 )
= ( x - 3 )( x^2 + 2 x - 8 )
= ( x- 3 ) [ x^2 + 4x - 2x - 8 )]
= ( x- 3 )( [ x( x + 4 ) - 2 ( x+ 4) ]
= ( x - 3 )( x+ 4 )( x- 2 )
c) x^5 + x + 1
= x^5 - x^2 + x^2 + x + 1
= x^2(x^3 - 1 ) + x^2 + x + 1
= x^2 ( x- 1 )(x^2 + x + 1 ) + x^2 + x+ 1
= ( x^2 + x + 1 )( x^3 - x^2 ) + x^2 + x + 1
=( x^2 + x + 1 )( X^3 - x^2 + 1 )
x2+7x+6
giúp mình nha (phân tích thành nhân tử )
nhanh mình k cho
a) x7+ x2 + 1
=x7-x+x2+x+1
=x.(x6-1)+(x2+x+1)
=x.(x3-1)(x3+1)+(x2+x+1)
=x.(x-1)(x2+x+1)(x3+1)+(x2+x+1)
=(x2+x+1)[x.(x-1)(x3+1)+1]
=(x2+x+1)(x5+x2-x4-x+1)
b) x5 + x4 + 1
=x5+x4+x3+x2+x+1-x3-x2-x
=x3.(x2+x+1)+(x2+x+1)-x.(x2+x+1)
=(x2+x+1)(x3+1-x)
\(x^8+x+1\)
\(=x^8+x^7+x^6-x^7-x^6-x^5+x^5+x^4+x^3-x^4-x^3-x^2+x^2+x+1\)
\(=x^6\left(x^2+x+1\right)-x^5\left(x^2+x+1\right)+x^3\left(x^2+x+1\right)-x^2\left(x^2+x+1\right)+\left(x^2+x+1\right)\)
\(=\left(x^2+x+1\right)\left(x^6-x^5+x^3-x^2+1\right)\)