Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) x7+ x2 + 1
=x7-x+x2+x+1
=x.(x6-1)+(x2+x+1)
=x.(x3-1)(x3+1)+(x2+x+1)
=x.(x-1)(x2+x+1)(x3+1)+(x2+x+1)
=(x2+x+1)[x.(x-1)(x3+1)+1]
=(x2+x+1)(x5+x2-x4-x+1)
b) x5 + x4 + 1
=x5+x4+x3+x2+x+1-x3-x2-x
=x3.(x2+x+1)+(x2+x+1)-x.(x2+x+1)
=(x2+x+1)(x3+1-x)
\(x^8+x^7+1\)
\(=\left(x^8-x^6+x^5-x^3+x^2\right)+\left(x^7-x^5+x^4-x^2+x\right)+\left(x^6-x^4+x^3-x+1\right)\)
\(=x^2\left(x^6-x^4+x^3-x+1\right)+x\left(x^6-x^4+x^3-x+1\right)+\left(x^6-x^4+x^3-x+1\right)\)
\(=\left(x^2+x+1\right)\left(x^6-x^4+x^3-x+1\right)\)
a, x8 + x7 + 1
=x2 (x6 - 1) + x (x6 - 1) +(x2 + x + 1)
= (x6 _ 1)(x2 + x) + (x2 + x +1)
= (x3 - 1)(x3 + 1)( x2 + x) + (x2 + x +1)
=(x - 1)(x2 + x +1)( x2 + x) + (x2 + x +1)
=(x2 + x +1)((x - 1)( x2 + x) +1)
=(x2 + x +1)(x3 + 1)
b, x5 - x4-1
c, x7+x5 + 1
d,x8 + x4 +1
Chú ý: Các đa thức có dạng: x3m+1+x3n+2+1 như x7+x2+1; x7+x5+1; x8 + x4 +1;
x5+x+1; x8+x+1 đều có nhân tử chung là x2 + x +1
Các phần còn lại tương tự nhé!!!
a) \(-5x^2+16x-3=-5x^2+15x+x-3=-5x\left(x-3\right)+x-3=\left(x-3\right)\left(1-5x\right).\)
b) \(x^4+64=x^4+16x^2+64-16x^2=\left(x^2+8\right)^2-\left(4x\right)^2=\left(x^2+4x+8\right)\left(x^2-4x+8\right).\)
c) \(64x^2+4y^4=4\left(16x^2+y^4\right)\)
d) \(x^5+x-1\)đa thức này có nghiệm vô tỷ. Mik ko phân tích được.
1)7x(x-5)-x(x-5)=(x-5)(7x-x)=6x(x-5)
2)x4+3x3+x+3=x3(x+3)+(x+3)=(x+3)(x3+1)=(x+3)(x+1)(x2-x+1)
3)x4+64=[(x2)2+2.x2.8+64]-16x2=(x2+8)2-(4x)2=(x2+4x+8)(x2-4x+8)
a, b sai đề nhé , sửa lại :
\(a,x^7+x^5+1=x^7+x^6+x^5-x^6+1=....\)
\(b,x^5+x+1=x^5-x^2+x^2+x+1=....\)
\(c,x^{11}+x+1=x^{11}-x^8+x^8-x^5+x^5-x^2+x^2+x+1=...\)
\(d,x^8+x^7+1=x^8+x^7+x^6-x^6+1=...\)
\(e,x^5+x^4+2x^2-1\)
Câu e tớ chịu , các câu trên tớ chỉ cho cậu hướng tách các hạng tử thôi, để cậu dễ dàng nhóm các nhân tử chung là \(x^2+x+1\), câu nào chưa làm được nữa thì để tớ giải rõ hơn nha
a, \(2x^2+2x+5x+5=2x\left(x+1\right)+5\left(x+1\right)=\left(2x+5\right)\left(x+1\right)\)
b,\(2x^2-2x+5x-5=2x\left(x-1\right)+5\left(x-1\right)=\left(2x+5\right)\left(x-1\right)\)
c,\(x^3-3x^2+1-3x=\left(x^3+1\right)-3x\left(x+1\right)=\left(x+1\right)\left(x^2-x+1\right)-3x\left(x+1\right)\)
\(=\left(x+1\right)\left(x^2-4x+1\right)\)
d,\(x^2-4x-5=x^2+x-5x-5=x\left(x+1\right)-5\left(x+1\right)=\left(x-5\right)\left(x+1\right)\)
e,\(\left(a^2+1\right)^2-4a^2=\left(a^2+1\right)^2-\left(2a\right)^2=\left(a^2-2a+1\right)\left(a^2+2a+1\right)=\left(a-1\right)^2\left(a+1\right)^2\)
\(a,x^4+4=x^4+4x^2+4-2x^4=\left(x^2+2\right)^2-4x^2\)
\(=\left(x^2+2-2x\right)\left(x^2+2+2x\right)\)
\(b,4x^8+1=4x^8+4x^4+1-4x^4\)
\(=\left(2x^4+1\right)^2-4x^4=\left(2x^4-2x^2+1\right)\left(2x^4+2x^2+1\right)\)
\(c,4x^4+y^4=4x^4+4x^2y^2+y^4-4x^2y^2\)
\(=\left(2x^2+y^2\right)^2-4x^2y^2\)
\(=\left(2x^2+y^2-2xy\right)\left(2x^2+y^2+2xy\right)\)
a) Ta có: x12 + 4
= x12 + 4x6 + 4 - 4x6
= (x6 + 2)2 - (2x3)2
= (x6 + 2 - 2x3).(x6 + 2 + 2x3)
= (x6 - 2x3 + 2).(x6 + 2x3 + 2)
\(a,x^4+64=\left(x^4+16x^2+64\right)\)
\(=\left(x^2+8\right)^2-\left(4x\right)^2\)
\(=\left(x^2-4x+8\right).\left(x^2+4x+8\right)\)
\(b,x^5+x+1\)
\(=\left(x^2+x+1\right).\left(x^3-x^2+1\right)\)
...