K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

a: \(x\left(x^3-4\right)+2x^3-4\)

\(=x^4-4x+2x^3-4\)

\(=\left(x^2-2\right)\left(x^2+2\right)-2x\left(x^2+2\right)\)

\(=\left(x^2+2\right)\left(x^2-2x-2\right)\)

b: \(\left(1+2x\right)\left(1-2x\right)-x\left(x+2\right)\left(x-2\right)\)

\(=1-4x^2-x\left(x^2-4\right)\)

\(=1-4x^2-x^3+4x\)

\(=-\left(x^3-1+4x^2-4x\right)\)

\(=-\left[\left(x-1\right)\left(x^2+x+1\right)+4x\left(x-1\right)\right]\)

\(=-\left(x-1\right)\left(x^2+5x+1\right)\)

3 tháng 9 2018

\(x^2-2x-4y^2-4y\)

\(=\left(x^2-4y^2\right)-\left(2x+4y\right)\)

\(=\left(x-2y\right)\left(x+2y\right)-2\left(x+2y\right)\)

\(=\left(x+2y\right)\left(x-2y-2\right)\)

1 tháng 10 2020

\begin{array}{l} a){\left( {ab - 1} \right)^2} + {\left( {a + b} \right)^2}\\  = {a^2}{b^2} - 2ab + 1 + {a^2} + 2ab + {b^2}\\  = {a^2}{b^2} + 1 + {a^2} + {b^2}\\  = {a^2}\left( {{b^2} + 1} \right) + \left( {{b^2} + 1} \right)\\  = \left( {{a^2} + 1} \right)\left( {{b^2} + 1} \right)\\ c){x^3} - 4{x^2} + 12x - 27\\  = {x^3} - 27 + \left( { - 4{x^2} + 12x} \right)\\  = \left( {x - 3} \right)\left( {{x^2} + 3x + 9} \right) - 4x\left( {x - 3} \right)\\  = \left( {x - 3} \right)\left( {{x^2} + 3x + 9 - 4x} \right)\\  = \left( {x - 3} \right)\left( {{x^2} - x + 9} \right)\\ b){x^3} + 2{x^2} + 2x + 1\\  = {x^3} + 2{x^2} + x + x + 1\\  = x\left( {{x^2} + 2x + 1} \right) + \left( {x + 1} \right)\\  = x{\left( {x + 1} \right)^2} + \left( {x + 1} \right)\\  = \left( {x + 1} \right)\left( {x\left( {x + 1} \right) + 1} \right)\\  = \left( {x + 1} \right)\left( {{x^2} + x + 1} \right)\\ d){x^4} - 2{x^3} + 2x - 1\\  = {x^4} - 2{x^3} + {x^2} - {x^2} + 2x - 1\\  = {x^2}\left( {{x^2} - 2x + 1} \right) - \left( {{x^2} - 2x + 1} \right)\\  = \left( {{x^2} - 2x + 1} \right)\left( {{x^2} - 1} \right)\\  = {\left( {x - 1} \right)^2}\left( {x - 1} \right)\left( {x + 1} \right)\\  = {\left( {x - 1} \right)^3}\left( {x + 1} \right)\\ e){x^4} + 2{x^3} + 2{x^2} + 2x + 1\\  = {x^4} + 2{x^3} + {x^2} + {x^2} + 2x + 1\\  = {x^2}\left( {{x^2} + 2x + 1} \right) + \left( {{x^2} + 2x + 1} \right)\\  = \left( {{x^2} + 2x + 1} \right)\left( {{x^2} + 1} \right)\\  = {\left( {x + 1} \right)^2}\left( {{x^2} + 1} \right) \end{array}

15 tháng 6 2018

a,\(=x^4-3x^3+3x^3-9x^2-4x^2+12x-12x+36\)

   \(=x^3\left(x-3\right)+3x^2\left(x-3\right)-4x\left(x-3\right)-12\left(x-3\right)\)

   \(=\left(x-3\right)\left(x^3+3x^2-4x-12\right)\)

    \(=\left(x-3\right)[x^2\left(x+3\right)-4\left(x+3\right)]\)

    \(=\left(x^2-9\right)\left(x^2-4\right)\)

30 tháng 9 2018

\(x^4+2x^3+2x^2+2x+1\)

\(=\left(x^4+2x^3+x^2\right)+\left(x^2+2x+1\right)\)

\(=\left(x^2+x\right)^2+\left(x+1\right)^2\)

\(=x^2\left(x+1\right)^2+\left(x+1\right)^2\)

\(=\left(x+1\right)^2\left(x^2+1\right)\)

11 tháng 7 2016

a)\(x^4-2x^3+2x-1=x^4-x^3-x^3+x+x-1\)

\(=x^3\left(x-1\right)-x\left(x^2-1\right)+\left(x-1\right)\)

\(=x^3\left(x-1\right)-x\left(x-1\right)\left(x+1\right)+\left(x-1\right)\)

\(=x^3\left(x-1\right)-\left(x^2+x\right)\left(x-1\right)+\left(x-1\right)\)

\(=\left(x-1\right)\left[x^3-\left(x^2+x\right)+1\right]\)

\(=\left(x-1\right)\left(x^3-x^2-x+1\right)\)

\(=\left(x-1\right)\left[x^2\left(x-1\right)-\left(x-1\right)\right]\)

\(=\left(x-1\right)\left(x-1\right)\left(x^2-1\right)\)

\(=\left(x-1\right)\left(x-1\right)\left(x-1\right)\left(x+1\right)\)

\(=\left(x-1\right)^3\left(x+1\right)\)

b)\(x^4+2x^3+2x^2+2x+1=x^4+x^3+x^3+x^2+x^2+x+x+1\)

\(=x^3\left(x+1\right)+x^2\left(x+1\right)+x\left(x+1\right)+\left(x+1\right)\)

\(=\left(x+1\right)\left(x^3+x^2+x+1\right)\)

\(=\left(x+1\right)\left[x^2\left(x+1\right)+\left(x+1\right)\right]\)

\(=\left(x+1\right)\left(x+1\right)\left(x^2+1\right)\)

\(=\left(x+1\right)^2\left(x^2+1\right)\)

11 tháng 7 2016

a) =

\(x^4-x^3-x^3+x^2-x^2+x+x-1=x^3\left(x-1\right)-x^2\left(x-1\right)-x\left(x-1\right)+\left(x-1\right)=\left(x-1\right)\left(x^3-x^2-x+1\right)\)

9 tháng 12 2018

a) \(2x\left(x-3\right)^2+5x\left(3-x\right)\)

\(=2x\left(x-3\right)^2-5x\left(x-3\right)\)

\(=\left(x-3\right)\left[2x\left(x-3\right)-5x\right]\)

\(=\left(x-3\right)\left(2x^2-6x-5x\right)\)

\(=\left(x-3\right)\left(2x^2-11x\right)\)

\(=x\left(x-3\right)\left(2x-11\right)\)

b) \(\left(x+3\right)^2-4\left(y^2-2y+1\right)\)

\(=\left(x+3\right)^2-2^2\left(y-1\right)^2\)

\(=\left(x+3\right)^2-\left[2\left(y-1\right)\right]^2\)

\(=\left[\left(x+3\right)-2\left(y-1\right)\right]\left[\left(x+3\right)+2\left(y-1\right)\right]\)

\(=\left(x+3-2y+2\right)\left(x+3+2y-2\right)\)

\(=\left(x-2y+5\right)\left(x+2y+1\right)\)

9 tháng 12 2018

a) \(2x.\left(x-3\right)^2+5x.\left(-x+3\right)=2x.\left(x-3\right)^2-5x.\left(x-3\right)\)

\(=\left(x-3\right).\left(2x^2-11x\right)=\left(x-3\right).x.\left(2x-11\right)\)

b) \(\left(x+3\right)^2-4.\left(y^2-2y+1\right)=\left(x+3\right)^2-2^2.\left(y-1\right)^2\)

 \(=\left(x+3\right)^2-\left[2.\left(y-1\right)\right]^2=\left(x-2y+1\right).\left(x+2y+5\right)\)

Đây là cách hiện đại :

 \(x^4-2x^3+2x-1\)

\(=\left(x^4-1\right)-\left(2x^3-2x\right)\)

\(=\left(x^2-1\right)\left(x^2+1\right)-2x\left(x^2-1\right)\)

\(=\left(x^2-1\right)\left(\left(x^2+1\right)-2x\right)\)

\(=\left(x+1\right)\left(x-1\right)\left(\left(x^2+1\right)-2x\right)\)

7 tháng 8 2016

a,=\(x^4-x^3-x^3+x^2-x^2+x+x-1\)

cu hai so nhom 1 nhom roi  dat thua so chung la xong

b,x^4+x^3+x^3+x^2+x^2+x+x+1

cu hai so lai nhom 1 nhom va dat thua so chung

1 tháng 11 2021

1.a) 2x4-4x3+2x2

=2x2(x2-2x+1)

=2x2(x-1)2

b) 2x2-2xy+5x-5y

=2x(x-y)+5(x-y)

=(2x+5)(x-y)

2.

a) 4x(x-3)-x+3=0

=>4x(x-3)-(x-3)=0

=>(4x-1)(x-3)=0

=> 2 TH:

*4x-1=0            *x-3=0

=>4x=0+1        =>x=0+3

=>4x=1           =>x=3

=>x=1/4

vậy x=1/4 hoặc x=3

b) (2x-3)^2-(x+1)^2=0

=> (2x-3-x-1).(2x-3+x+1)=0

=>(x-4).(3x-2)=0

=> 2 TH

*x-4=0

=> x=0+4

=> x=4

*3x-2=0

=>3x=0-2

=>3x=-2

=>x=-2/3 

vậy x=4 hoặc x=-2/3

1 tháng 11 2021

sửa 1 chút phần cuối:

3x-2=0

=>3x=0+2

=>3x=2

=>x=2/3

vậy x=2/3 hoặc....

18 tháng 10 2019

Bài 1 : 

a) \(x^4-4x^2-4x-1\)

\(=x^4-\left(4x^2+4x+1\right)\)

\(=x^4-\left(2x+1\right)^2\)

\(=\left(x^2-2x-1\right)\left(x^2+2x+1\right)\)

b) \(x^2+2x-15\)

\(=x^2+2x+1-16\)

\(=\left(x+1\right)^2-4^2\)

\(=\left(x+1+4\right)\left(x+1-4\right)=\left(x+5\right)\left(x-3\right)\)

c) \(x^3y-2x^2y^2+5xy\)

\(=xy\left(x^2-2xy+5\right)\)

18 tháng 10 2019

B2:

a) \(2\left(x-1\right)^2-\left(2x+3\right)\left(2x-3\right)\)

\(=2\left(x^2-2x+1\right)-\left(4x^2-9\right)\)

\(=2x^2-4x+2-4x^2+9\)

\(=-2x^2-4x+11\)

b) \(\left(x+3\right)^2-2\left(x+3\right)\left(x-3\right)+\left(x-3\right)^2\)

\(=\left(x+3-x+3\right)^2=6^2=36\)

c) \(4\left(x-1\right)\left(x+3\right)+5\left(2x+1\right)^2-2\left(5-3x\right)^2\)

\(=4\left(x^2+2x-3\right)+5\left(4x^2+4x+1\right)-2\left(9x^2-30x+25\right)\)

\(=4x^2+8x-12+20x^2+20x+5-18x^2+60x-50\)

\(=6x^2+88x-57\)